
eMOS User Manual
INTRODUCTION
eMOS is a Real-Time Operating System (RTOS) from ImageCraft with the following
features:

No limits on most of its functions and features except by the size of the available
SRAM of the target device.

Multitasking kernel with round robin priority-based preemptive scheduling. Up to 4
priority levels defined in binary release. Source release has no preset limits.

System calls use a single kernel stack, minimizing tasks’ stack overhead.

Message passing primitives provide synchronizing and interprocess
communication capabilities, minimizing the problem with asynchronous events
and data copying. Automatic priority inheritance eliminates priority inversion
issues.

Mutex, also with automatic priority inheritance, allows access to critical resources.

System safety features including: memory resource tracking, virtual watchdog
system, and stack checking to help you discover bugs and increase the
robustness of your system.

Additional plug-in modules including System Status task, TCP/IP, USB, File
System, etc. will be created using this underlying OS technology.

Design Philosophy
eMOS is a modern RTOS designed for embedded projects. Features such as a
preemptive kernel, message passing for synchronization and interprocess
communication, and mutex with priority inheritance make for a clean design; use of a
single kernel stack, careful design of the internal data structures and use of compiler
pragma minimizes resource consumption; and system safety features such as stack
checking, virtual watchdog and memory tracking set eMOS apart from other RTOSes.

eMOS can be used on devices ranging from low-end 8-bit AVR microcontrollers with
8K of flash1 and 2K of RAM to 32-bit ARM devices with lots of memory. The kernel API
takes just a few kilobytes and can be used by itself in a minimal system to provide
basic multitasking services.

1. With minimal functionality.

eMOS - Embedded Message Passing RTOS
In designing the eMOS tasking model, we feel that a preemptive priority-based round
robin scheduler is the simplest model for users, because it allows the natural
“functions as tasks” style of writing programs. It places no restriction on how users
may structure their code, and users do not need to work around the tasking model.
The scheduler gets called whenever a high-priority task becomes ready to run,
providing very fast response to real-time events.

To minimize resource consumption, a separate kernel stack is used by the kernel
calls, so that each task does not need to provide the stack resources needed by the
kernel.

For process synchronization and interprocess communication, we have adopted the
message passing semantics made popular by OSes such as QNX. A set of 3
primitives provides a robust and fast solution to both synchronization and interprocess
communication requirements, plus it handles the problems with priority inversion. For
simpler needs, eMOS also provides mutex with priority inheritance.

As many embedded systems are used in low-power situations, eMOS provides hooks
to the idle task so that you may place the system in low-power mode to conserve
power, to be awakened by interrupts or timer events.

The general philosophy is to provide flexibility rather than to optimize the design for a
particular niche (e.g., memory constraint devices). Thus, eMOS uses dynamic
memory allocation (via a best-fit always-merge allocator to lessen memory
fragmentation). It places no arbitrary limits on the number of tasks or task priorities
except as constrained by the memory size or datatype size, and allows dynamic task
creation and deletion. This approach allows eMOS to scale up and down except in the
most memory-constrained situations.

Memory overwrite and, in particular, stack overflow are common sources of problems
in embedded software. As most CPUs do not have any support for stack checking,
this problem can manifest in mysterious system crashes that are difficult to track
down. eMOS provides stack checking at every task switch (which may be turned off
for final production builds) to ensure stack overflows are caught.

A slow or resource-constrained CPU can be replaced with a faster CPU or one with
more resources, but there is no substitute for 100% reliable embedded software.
Failing that, a system should at least allow postmortem analysis and failsafe recovery.
As more embedded products are deployed in the world and in mission-critical
environments, it is of the upmost importance for the RTOS to provide as many system
safety features as possible without compromising the performance of the system. In
the worst case scenario, a hardware anomaly such as alpha particles affecting SRAM
cells is a real possibility under some conditions. eMOS provides a virtual watchdog to
2 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
check the health of the processes. You can combine the virtual watchdog with a
hardware watchdog and increase the chance of preserving the integrity of the system
even if the system fails.

Product Versions
You license the use of eMOS binary in your products. eMOS is licensed in multiple
versions with no royalties for both commercial and non-commercial uses. Features
such as changing the number of priority levels, or removing the stack checking for
production release are available only in source licenses.

For non-commercial use and evaluation, you may not develop or deliver products with
these versions:

Free binary release with support for up to 5 tasks, available on our web site
http://www.imagecraft.com and as part of our compiler product demos.

Low-cost binary-only release for evaluation only.

For commercial uses:

STD - Binary release with unlimited-end-user product distribution for a single
developer (one person) and a single embedded product.

ADV - Source release with unlimited-end-user product distribution for a single
developer (one person) and a single embedded product.

PRO - Source release with unlimited-end-user product distribution for a single
developer or company for use in multiple products.

Purchase includes six months of upgrades and support. Additional upgrades and
support may be purchased on a per annum basis. You may continue to use your
licensed copy of the product and distribute the end user products after the support
contract expires if you choose not to renew. Please see our web site for current pricing
information.

eMOS is written using our ImageCraft line of embedded C compilers. It takes
advantage of the compiler pragmas and calling conventions for efficient code
handling. However, it should be easily portable to other compilers and other
architectures. Please visit our web site for information on porting process and fees.
3 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Change Logs

Changes in V1.01
Added eMOS_MsgDiscardAsyncMsg().

Added timeout_ms argument to eMOS_MsgReceiveMsg().
4 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Software License Agreement
This is a legal agreement between you, the end user, and ImageCraft. If you do not
agree to the terms of this Agreement, please promptly return the package for a full
refund.

GRANT OF LICENSE. This ImageCraft Software License Agreement permits you to
use the ImageCraft eMOS for AVR (“SOFTWARE”) in your product according to the
license types:

STD - this license allows unlimited-end-user product distribution for a single
developer (one person) and a single embedded product. You may not reverse-
engineer the source code of the SOFTWARE.

ADV - this license allows unlimited-end-user product distribution for a single
developer (one person) and a single embedded product. A copy of the source
code is provided for your archiving and modification purposes for product
development only. You may not transfer the source code to another party (person
or company) or otherwise allow another party to have access to the source code
without explicit written permission from ImageCraft.

PRO - this license allows unlimited-end-user product distribution for a single
developer or company for use in multiple products. A copy of the source code is
provided for your archiving and modification purposes for product development
only. You may not transfer the source code to another party (person or company)
or otherwise allow another party to have access to the source code without
explicit written permission from ImageCraft.

Non-Commercial Use - this license allows you to evaluate the SOFTWARE, not
for product development or delivery. You may not reverse-engineer the source
code of the SOFTWARE.

COPYRIGHT. The SOFTWARE is owned by ImageCraft and is protected by United
States copyright laws and international treaty provisions. You must treat the
SOFTWARE like any other copyrighted material (e.g., a book). You may not copy
written materials accompanying the SOFTWARE.

OTHER RESTRICTIONS. The SOFTWARE is not for re-sale. You may not rent,
lease, or sell the SOFTWARE license. Except for the PRO license, you are licensing
the SOFTWARE for use on a single product. Multiple developers working on the same
product require a separate license for each developer unless you purchase a PRO
license, or unless the developers do not use the SOFTWARE at the same time. A
single developer working on multiple products using the SOFTWARE requires a
separate license for each product, unless you purchase a PRO license.
5 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
LIMITED WARRANTY
LIMITED WARRANTY. ImageCraft warrants that the SOFTWARE will perform
substantially in accordance with the accompanying written materials and will be free
from defects in materials and workmanship under normal use and service for a period
of thirty (30) days from the date of receipt. Any implied warranties on the SOFTWARE
are limited to 30 days. Some states do not allow limitations on the duration of an
implied warranty, so the above limitations may not apply to you. This limited warranty
gives you specific legal rights. You may have others, which vary from state to state.

CUSTOMER REMEDIES. ImageCraft’s entire liability and your exclusive remedy shall
be, at ImageCraft’s option, (a) return of the price paid or (b) repair or replacement of
the SOFTWARE that does not meet ImageCraft’s Limited Warranty and that is
returned to ImageCraft. This Limited Warranty is void if failure of the SOFTWARE has
resulted from accident, abuse, or misapplication. Any replacement SOFTWARE will
be warranted for the remainder of the original warranty period or 30 days, whichever is
longer.

NO OTHER WARRANTIES. ImageCraft disclaims all other warranties, either express
or implied, including but not limited to implied warranties of merchantability and fitness
for a particular purpose, with respect to the SOFTWARE, the accompanying written
materials, and any accompanying hardware.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. In no event shall ImageCraft or
its supplier be liable for any damages whatsoever (including, without limitation,
damages for loss of business profits, business interruption, loss of business
information, or other pecuniary loss) arising out of the use of or inability to use the
SOFTWARE, even if ImageCraft has been advised of the possibility of such damages.
The SOFTWARE is not designed, intended, or authorized for use in applications in
which the failure of the SOFTWARE could create a situation where personal injury or
death may occur. Should you use the SOFTWARE for any such unintended or
unauthorized application, you shall indemnify and hold ImageCraft and its suppliers
harmless against all claims, even if such claim alleges that ImageCraft was negligent
regarding the design or implementation of the SOFTWARE.
6 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
GETTING STARTED
Header Files

The primary header file is emos.h. All your source files that use eMOS should include
this file.

Other header files that you do not need to explicitly include in your source files
(because they are included by emos.h) are: _emos.h for internal use (e.g. private
header file for the eMOS source), target.h with device-specific defines, and
emos_func.h with function declarations. These files should be copied to your
c:\iccv7avr\include directory if they are not there already.

“Strings in Flash” Option

You must enable this option in your Project->Options->Target dialog box as
eMOS is compiled with this option set to save SRAM space.

Using the Binary (Library) Version

The library file libemos_avr.a contains the eMOS functions. Copy the file to your
c:\iccv7avr\lib directory (if it is not there already) and add emos_avr to the
Project->Options->Target->Additional Libs edit box of your project.

libemos_avr.a is for all Mega AVR with flash memory 16K bytes or larger and
smaller than the ATMega256. For ATMega256 users, however, you should use the
alternate library file libemos_atm256.a, as the M256 uses 3 bytes to store the
function call return address and the library differs slightly.

To create your project, at the minimum, you will need to add (to your project file list) a
file with your main function, and the supplied file avr_usermod.c (or
atm256_usermod.c for M256 users) with modifications, if any. If you use printf or
puts, per usual ICC usage, you will need to include a copy of putchar also (you can
find samples of putchar in c:\iccv7avr\examples.avr).

The linker links in library code modules only if they are actually referenced (an entire
object module is linked in if any part of it is referenced). So, if you do not use some of
the eMOS features (outside of the core multitasking kernel), you will not be incurring
the overhead.

The demo version of eMOS allows up to 5 tasks to be created. The licensed versions
have no preset limit.

Using the Source Version

Unzip the archive file emos_avr_src.zip to a directory of your choice and add all
the C and asm source files (ones with .c and .s extensions) to the project file list of
your project.
7 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Source File Structure
main() Function

When using eMOS, your main() function typically looks something like the following:

#include “emos.h”
...
void task1(void);
...
main()

{
extern int _bss_end;
eMOS_SysInit(&_bss_end, 1024*8);
eMOS_TaskCreate(EFN(task1), ...
eMOS_TaskCreate(EFN(task2), ...
...
eMOS_SysStart();
// never return
}

You must call eMOS_SysInit() before calling any other eMOS functions with the
arguments being the beginning address and size of the free SRAM space to be used
by eMOS. In this code fragment, the address of _bss_end is the starting address of
the free SRAM and 8K bytes is allocated for eMOS. eMOS uses SRAM to allocate
process structures, stacks, mutex etc.

You then use eMOS_TaskCreate() to create your initial tasks. Tasks or processes
can be created and destroyed dynamically, even within other processes. The macro
EFN() takes a function name (e.g., task1) and expands it to

“task1”, task1

corresponding the first two arguments to the eMOS_TaskCreate function which are
the ASCII string name of the task and the address of the task function (i.e., the name
of the function).

Finally, you call eMOS_SysStart() to start the eMOS multitasking kernel. From that
point on, eMOS kernel will select tasks to run. eMOS_SysStart will not return.

Task Function

A task function is a normal C function and usually executes in an infinite loop. If it ever
returns, the task is terminated:

#pragma ctask:task1
void task1(void)
8 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
{
while (1) // forever loop

{
eMOS_MsgReceive(...
...
eMOS_MsgReply(...
...
}

}

You should use the ctask pragma (as shown above) to direct the compiler not to
generate any unneeded register saving and restoring code. Typically a task can be
categorized as a server task, a client task, or a processing task (other categorizations
are of course possible). The client-server model would most likely use the message
passing API to send and receive requests. For example, you may use a server task to
handle accesses to a LCD controller so that multiple processes can use the LCD
without worrying about arbitration. In such an example, the server task would use
eMOS_MsgReceive() to wait for a request and the client tasks use
eMOS_MsgSend() to send requests. The interpretation of the message content is
entirely determined by the message senders and receivers.

Mutex is also provided to provide exclusive access to shared resources.

Where To Go Next
The remaining portion of this document is the technical manual for eMOS. Most of the
document is divided by sections of different API subsystems. First the subsystem is
described in some details, followed by the list of the API functions.

There are a few sample projects in examples.avr\emos\; they should give you
some ideas on how to write your own programs. There are a small number of target
specific changes that you may need to make; see USER-SUPPLIED CODE and
OPTIMIZING YOUR SYSTEM. The eMOS resource requirements are summarized in
eMOS RESOURCE USAGE.
9 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
STACK CHECKING
A common cause of error in embedded programming is stack overflow. Stacks are
used for local variable allocation and storing function call return addresses. Since the
amount of SRAM is limited, the stack may overflow into space already allocated for
other uses. In a normal C program for the AVR, the hardware stack (which is used for
function calls) may run into the software stack and the software stack may run into the
C global data.

With an RTOS, the situation generally worsens because each task has its own stacks.
However, we can also turn a disadvantage into a big advantage for users: we can
perform stack checking at task switch time and ensure that the stacks overflow have
not occurred. Since eMOS is preemptive, it can catch most if not all of the stack
pointer problems right when they occur. This can be optionally switched off for
production builds (if you have a source license).

When a task is created, eMOS places two sentinals at the hardware and software
stack bottoms. Both sentinals have the same value as the constant
TASK_IS_HEALTHY used for the virtual watchdog, or the value 0x6B. During task
switching, before running the selected task, eMOS checks if the task’s stack pointers
are within bounds, and it also checks if the sentinal values are still there. If either
condition is not met, then an error has occurred.

When eMOS detects an improper stack pointer value, it calls the function
eMOS_UserSOS to process the info and the eMOS_UserSysReset to reset the
system. See USER-SUPPLIED CODE.
10 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
ERROR MODULE
Catastrophic Failures

In the case of a catastrophic failure as detected by the stack checking or the virtual
watchdog, a user-supplied function eMOS_UserSOS is called (see USER-SUPPLIED
CODE) and the following error code (defined in emos.h) is supplied.

BAD_RUNNABLE process state not marked as Runnable

BAD_BLOCKED process state not marked as Wait Blocked

BAD_SLEEP process state not marked as Sleep

BAD_HIBERNATE process state not marked as Hibernate

BAD_HEALTH process did not set Healthy status

BAD_STACK process hardware stack out-of-bounds

BAD_SWSTACK process software stack out-of-bounds

BAD_COOKIE bad call to eMOS_VWatchdogFeedCookie

BAD_DELAY_TIMER_EXPIRES process virtual watchdog delay timer
expired

System Call Errors

In the early stages of program development, a common source of errors might come
from incorrect arguments to eMOS functions. eMOS calls the user supplied function
eMOS_UserSyscallError(char __flash *func, int retval) to process
the error. func is the ASCII name of the eMOS function, and retval is a negative
error number. Typically, in initial development stage, eMOS_UserSyscallError
should print out the function name and return retval. The error codes are described
in the function descriptions below.

If you have a source license, you can define the macro NO_USERSYSCALLERROR
in your project->options->compiler->Macro Defines, and a system call
simply returns the error code when there is an error, thus saving the space used by
the ASCII names for the eMOS_UserSyscallError calls.

Error Function

You can call eMOS_ErrorString to convert an error code to an ASCII string:

char __flash *eMOS_ErrorString(int code)

returns an ASCII string based on the error code. It returns “unknown failure code”
if code is invalid.
11 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
API SUMMARY
eMOS API are divided into different modules. The naming convention is that the user-
callable API has the form eMOS_<Module><Action>, e.g. eMOS_TaskCreate() to
create a task. eMOS has the following modules:

The System Module (API names begin with eMOS_Sys...) contains the system
initialization and startup functions.

The Multitasking kernel (eMOS_Task...) implements the tasking features of
eMOS.

The Scheduling API (eMOS_Sched...) allows you to change the scheduler’s
behavior.

The Message Passing primitives (eMOS_Msg...) provide the interprocess
communication and process synchronization functions.

The Mutex (eMOS_Mutex...) is a simple process synchronization mechanism with
priority inheritance support.

The Com unit (eMOS_Com...) provides a uniform buffered input/output IO
interface to serial devices.

The Memory Management unit (eMOS_Mem...) provides dynamic memory
allocation using a best-fit always-merge algorithm for combination of fast
performance and minimized fragmentation.

In addition, dynamic memory can be tracked per process basis, eliminating user
bookkeeping errors.

The Virtual Watchdog unit (eMOS_VWatchdog...) provides a virtual watchdog to
check the health status of the system. It can also optionally work with the
hardware watchdog.

Most user-supplied functions have the form eMOS_User... or user functions are
assigned to eMOS global function pointers (e.g. void (*eMOS_SysTickHook)()).

List of all the functions in eMOS:

System

int eMOS_SysInit(void *begin, unsigned size);
int eMOS_SysStart(void);
void eMOS_SysIdleHook(void (*func)(void));
void eMOS_SysTickISRHook(void (*func)(void));
long eMOS_SysGetTicks(void);
12 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Kernel

int eMOS_TaskCreate(char FLASH *name, void (*func)(void),
unsigned char prio, unsigned stacksize, unsigned
hw_stacksize);
int eMOS_TaskGetID(void);
char FLASH * eMOS_TaskGetName(void);
int eMOS_TaskGetPIDByName(char FLASH *);
char FLASH * eMOS_TaskGetNameByPID(int);
void eMOS_TaskYield(void);
void eMOS_TaskHibernate(void);
int eMOS_TaskWakeup(int pid);
int eMOS_TaskKill(int pid);
void eMOS_TaskSleep(int secs);
void eMOS_TaskSleepMs(int msecs);
PROC_DUMP *eMOS_TaskProcDump(void *p);
PROC_DUMP *eMOS_TaskProcDumpByID(int pid);
void eMOS_SchedOff(void);
void eMOS_SchedOn(void);

Message Passing

int eMOS_MsgSend(int pid,void *sendbuf, int sendlen,void
*reqbuf, int reqlen);
int eMOS_MsgAsyncSend(int pid, unsigned msg);
int eMOS_MsgReceive(int *ppid, void *recbuf, int reclen, int
timeout_ms);
int eMOS_MsgReply(int pid, void *reqbuf, int reqlen);
int eMOS_MsgDiscardAsyncMsg(void);

Mutex

int eMOS_MutexCreate(void);
void eMOS_MutexDestroy(int mid);
int eMOS_MutexLock(int mid);
int eMOS_MutexUnlock(int mid);

Memory Management

void eMOS_MemInit(void *begin, unsigned size);
void *eMOS_MemAlloc(unsigned size);
void eMOS_MemFree(void *ptr);
void eMOS_MemEnableTracking(void);
void eMOS_MemDisableTracking(void);
void eMOS_MemFreeAll(void);
13 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
int eMOS_MemSpaceAvail(void);
int eMOS_MemSpaceUsed(void);

Com Unit

void eMOS_ComInit(void);
void eMOS_ComTerm(void);
int eMOS_ComOpen(int dev, COM_DESC_TYPE *cd);
int eMOS_ComClose(int dev);
int eMOS_ComRead(int dev, unsigned char *buf, unsigned
size);
int eMOS_ComWrite(int dev, const unsigned char *buf,
unsigned size);
void eMOS_ComISRPut(int dev);
void eMOS_ComISRGet(int dev);

Virtual Watchdog

void eMOS_VWatchdogStart(void);
void eMOS_VWatchdogFeedCookie(int status);
void eMOS_VWatchdogDelayTimer(unsigned msec);

Error Function

char __flash *eMOS_ErrorString(int code);

User Supplied Functions

void eMOS_UserSysInit(void);
void eMOS_UserSysStart(void);
void eMOS_UserSOS(int code);
void eMOS_UserSyscallError(char __flash *func, int code);
14 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
CORE SYSTEM
The system API provides functions to initialize and start the system. Almost all eMOS
system functions (API) execute with interrupts disabled, so that eMOS functions can
use a single kernel stack to minimize SRAM resource consumption.

Using External Memory
We have optimized eMOS’ memory footprint in designing the process data structure
and in using the single kernel stack for system calls etc. A rough estimate is that each
task needs about 100 bytes in SRAM for its data structure and stacks. This allows you
to run ten to twenty tasks on a small system with 2K of SRAM. The gain is that by
using eMOS, you may simplify your design and coding, resulting in a more robust
program faster.

You can also use external memory with eMOS. In the simplest case, you will need to
set up the memory interface registers (e.g. the XMCRA and XMCRB registers) 1in
your main function or in a modified C startup file, and then call eMOS_SysInit (see
below) with the starting address and the size of your memory. If you have
discontiguous memory chunks, you can use the function eMOS_MemInit to tell eMOS
about additional memory chunks.

Kernel Stack
Since a task may be preempted by another task at any moment through the system
tick interrupt, a task must have enough stack space to hold the CPU context (e.g., the
registers) as part of the interrupt processing and task switching.

When you make a system call, it normally would use stack space on the task stack
too. To minimize a task’s stack usage, we have designed eMOS such that all system
calls use a single kernel stack.

If you are writing your own interrupt handlers, you can also use the kernel stack API to
switch your handlers to use the kernel stack, lessening the stack requirements of the
host task.

1. Be aware that some external memory may require a waiting time before the
memory can be accessed.
15 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Estimating Stack Size
As eMOS provides stack checking, you can always test the program with different
stack sizes for the tasks to see how they perform. To estimate the stack size, estimate
the largest amount of local variable space in the task’s execution paths. If you look at
the program’s .lst file (View->”Listing File” under the IDE) and search for the task
function’s name, you should see the instruction to reserve space on the stack for that
function, e.g.

_mut1:
 lockid --> R14
 t --> R12
 id --> R10

393 940E 0BD7 CALL push_xgset00FC
395 9724 SBIW R28,4

The call push_xgset... saves 6 registers on the stack (the name contains the bit
patterns, e.g. 0x00FC has 6 bits on) and then the sbiw instruction allocates 4 bytes
on the stack. Thus, the local variable space for this function is 10. If the function calls
other functions, you will need to trace through the paths.

If you are calling printf, then you should add 40 bytes to the software stack and 10
bytes to the hardware stack, as printf is fairly expensive. Other library functions are
generally less expensive, and 6-10 bytes would be sufficient for most.

You will also need to add space to hold the CPU context, i.e., all the registers during a
task switch. The #defines MIN_STACKSIZE and MIN_HW_STACKSIZE are good
starting values for a task function that may have a small number of local variables and
may contain one or two function calls. You can always start with these values, or add
some increments to these values, and see how the system behaves. Invalid stack
pointers are detected by the system’s stack checking function; however, even if that
capability has been turned off, unchecked stack overflow will probably cause a system
to crash.
16 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Internally, the stacks are allocated as part of the same block of memory that holds the
process data structure.

printf and Kernel Stack
Since it uses internal buffers, the library function printf is not reentrant (i.e., it
cannot be interrupted and run by another task). Moreover, it uses ~40 bytes of
software stack and ~6 bytes of hardware stack (on top of whatever your task needs).
Therefore, if your task function uses printf, it should increase the stack sizes
accordingly and also disable scheduling around the call:

...
eMOS_SchedOff();
printf(...
eMOS_SchedOn();
...

low address

high address

Process data

The PROCESS DATA STRUCTURE

software stack

hardware stack

The stacks grow from high memory addresses
toward low memory addresses.
17 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
We also provide a version of printf that uses the kernel stack and disables
interrupts. Its use should be limited, since it turns off interrupts. Therefore, if you have
high-priority tasks or use the watchdog, or have time-critical tasks that are sleeping or
hibernating, etc., then you should not use this version of printf! However, it does
eliminate the need to allocate extra stack space, since it uses the kernel stack.

int eMOS_Printf(char *fmt, ...)

is the interface to use the library printf using the kernel stack and with interrupt
disabled.

The System API
int eMOS_SysInit(void *address, unsigned size)

initializes the eMOS system. This must be called before other eMOS functions.
The address and size are the location and size of the free memory space for the
memory allocator (see MEMORY MANAGEMENT). A typical call may look like:

extern int _bss_end; // defined by ICC
...
eMOS_SysInit(&_bss_end, 1024*6); // 6K of free space
...

The function will check the accessibility of the memory by writing and reading the
content of the first and last byte of the memory region specified.

Return Values:

0 : success

ERR_PID_NOT_ZERO : the next process ID is not zero. Either indicates a
configuration error (e.g. the C startup did not initialize global variables correctly) or
that the user calls eMOS_TaskCreate prior to calling eMOS_SysInit
(eMOS_SysInit must be called first).

ERR_CANNOT_WRITE_FREEMEM : cannot correctly write to the first byte of the
free memory.

ERR_CANNOT_WRITE_FREEMEM_END : cannot correctly write to the last byte
of the free memory.

int eMOS_SysStart(void)

This starts the eMOS kernel. Typically this is done as the last line in the main()
function. Once started, the CPU execution is controlled by eMOS and will not
return to the original main() function.
18 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Return Values:

(normally does not return once multitasking starts)

ERR_NULLTASK_NOT_FOUND : cannot find the NullTask, an unexpected
internal error.

void eMOS_SysTickISRHook(void (*func)(void))

This arranges func to be called whenever the system tick interrupt handler is
called, typically once every 10 ms. The function should be made as short as
possible to minimize the impact to the system. See OPTIMIZING YOUR
SYSTEM.

IMPORTANT: since the function is called using the kernel stack, it must not call
eMOS_TaskWakeup as it will cause the system to crash. Your own ISR, not using
the kernel stack, may call eMOS_TaskWakeup without problems.

void eMOS_SysIdleHook(void (*func)(void))

This arranges func to be called whenever the system is quiescent and has no
runnable user task. This is useful for putting the system in the low-power mode to
conserve power and for only having interrupt handlers responding to events. See
OPTIMIZING YOUR SYSTEM.

long eMOS_SysGetTicks(void)

This returns the number of ticks executed since the system start.
19 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
MULTITASKING KERNEL
Using an RTOS allows you to divide your program into multiple tasks or processes.1
Since a (single core) CPU has only one path of execution at a time, the kernel of an
RTOS manages the tasks and uses a scheduler to decide which task is run by the
CPU. With eMOS, any C function can become a task. In fact, multiple tasks can share
the same C function if desired.

eMOS is a preemptive priority-based multitasking kernel. It is called preemptive
because periodically the kernel takes control of the CPU and the scheduler examines
the list of all the tasks that are eligible to run (e.g., not waiting for a message, or
blocked) and makes another task run when the control returns to the user tasks. The
opposite of a preemptive kernel is a cooperative kernel, where a task explicitly gives
up control before another task can be run. A preemptive kernel is far more flexible,
since you do not need to partition your code such that it gives up processing at the
right moment. The cost of a preemptive kernel is the overhead of needing to store the
CPU context on each task’s stack when a task switch occurs.

The frequency of the periodic system interrupt is called a tick or quantum, and is
usually once every 10 milliseconds. Typically a task is allowed to run for a period of
multiple ticks called a timeslice, and the system tick interrupt only does some
housekeeping and does not call the scheduler unless either the process’s timeslice is
finished or a higher-priority process becomes eligible to run. When a task runs for
completion of its timeslice period, a new task is selected to run for its timeslice period.
This is called round-robin scheduling.

1. This document uses the terms task and process interchangeably.

10ms 10ms10ms 10ms10ms

task execution

timeslice ends

system tick interrupts
20 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
To provide further control and flexibility, a task is given a (not necessarily unique)
priority at task creation time. If a higher-priority task becomes runnable, the scheduler
is called almost immediately, even before the next tick interrupt and without waiting for
the current (lower-priority) task to finish its timeslice. This gives the system a very fast
response time to real-time events.
21 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
.

.

.

EMOS_PRIO_MAX

EMOS_PRIO_NULL

EMOS_PRIO_MIN

...

Null

PROCESS TABLE of all runnable processes

Each rounded rectangle denotes a runnable process. The process table is
indexed by the priority values and each entry is a link to all runnable processes
of that priority. The Scheduler always selects the highest priority runnable
process to run. If the table is sparse and has empty entries, it takes time to skip
over those entries.

The “null” task is the system idle task that runs when no other task is runnable.

The Sleep and Hibernate lists keep track of the sleeping and hibernating
processes.

Sleep list

Hibernate list

Processes blocking on message send are linked off the receiver process and
processes waitinf on a mutex are linked off the mutex:

message receiver process or mutex

chain of waiting processes
22 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Interrupt Handlers
The preferred method of handling real-time events is to use high-priority tasks. As
they become ready to run, they are scheduled almost immediately, so the response
time is very fast. For system events that need even more immediate attention, you
may use the system interrupt capability directly.

eMOS provides API functions for a user-written ISR to save the user context and
switch to use the kernel stack, and an exit function to either cause an immediate task
switch or to restore the user context.

Another option is to leverage the 10-ms system tick interrupt and have it call a function
of your choosing. This allows you to run a lightweight function at the system tick
frequency.

Interrupts and eMOS Functions
Most eMOS functions are run with interrupts disabled, and will blindly enable
interrupts before returning. Therefore, generally, you should not call an eMOS function
inside an interrupt handler. The exceptions are:

eMOS_SchedOn(), and (less useful in an ISR) eMOS_SchedOff()

eMOS_TaskWakeup()

eMOS_TaskWakeup is especially useful in a low-power system. See The Tasking API
below.

Process States
A process state may be in one of the following states:

running - the current process

runnable - the process is ready to run

blocked - the process is waiting for a message, or a mutex, etc.

sleep - the process is sleeping for X system ticks

hibernate - the process is hibernating

zombie - the process has been killed but the resources (i.e. process data structure
and any tracked memory) have not been reclaimed by the system yet.
23 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Task Priorities
The lowest task priority is 0 and is reserved for the system’s idle task (known as the
“null task”). EMOS_PRIO_MIN is 1 and is the lowest priority you can specify when
creating a task. EMOS_PRIO_MAX is the highest priority and is set to 3 by default. If
you have a source license, you may change the EMOS_PRIO_MAX value to be any
number that can be represented in the datatype of the prio field in the internal
process structure, which is by default an unsigned char.

You can always start with a large priority range (e.g. set the EMOS_PRIO_MAX to a
high value such as 256) and use values sparsely to accomodate future needs. Or, you
can start with just a few priority levels and modify them later if needed. There is some
minor performance impact with a large range, since runnable tasks are linked in a
table indexed by the priority levels, and thus the more levels there are, the longer it
takes to traverse the table.

The Tasking API
int eMOS_TaskCreate(char __flash *name, void (*func)(),
unsigned char priority, unsigned stacksize, unsigned
hw_stacksize)

This creates a task and returns its process ID.

name is for your reference only, and it may be null (0). If non-null, you may search
for a process by its name. The system does not check for duplicate names. To
minimize data SRAM usage, name should reside in flash. Since usually you
would use a literal string as the name, the option Project->Options-
>Target->Strings in Flash should be enabled.

func is the task function. It should be a normal C or asm function. If the latter, it
must follow the calling conventions of the C compiler. For a C function, to
minimize stack usage, you should use the #pragma ctask to declare the
function as a ctask. This directs the compiler not to save and restore Preserved
Registers as dictated by the C calling convention, e.g.:

#pragma ctask task1
...
void task1() { ... }
// somewhere in your code
eMOS_TaskCreate(“task1”, task1, EMOS_PRIO_NORM,
MIN_STACKSIZE, MIN_HW_STACKSIZE);
24 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
The last two arguments are the stack sizes. For the Atmel AVR, since it uses two
stacks (a software stack for data and a hardware stack for function calling), you
must specify sizes for both stacks.

The stack must be large enough to hold the CPU context plus the deepest
memory used by the functions called by the task function. If the stack is too small,
the eMOS stack checking will reset the system, or the system will crash.

The macros MIN_STACKSIZE and MIN_HW_STACKSIZE can be used as defaults
if the task function does not call other functions.

Return Values:

> 0 : process ID

ERR_OUT_OF_MEMORY : cannot allocate memory for process structure.

ERR_MAX_TASKS_CREATED: only applicable in the demo version, which limits
the maxiumum number of tasks to 5.

int eMOS_TaskGetID(void)

This returns the current process ID.

char *eMOS_TaskGetName(int process_id)

This returns the name of the task.

int eMOS_TaskGetPIDByName(char *name)

Given a task name, this returns the process ID. Note: the behavior is undefined if
you have multiple tasks with the same name.

Return Values:

>= 0 : process ID.

ERR_PID_NOT_FOUND : no process with the name is found.

char *eMOS_TaskGetNameByPID(int id)

Given a task ID, this returns the process name. Returns 0 if there is no process
with that ID.

void eMOS_TaskYield(void)

This gives up execution and allows other tasks to run. The task is still in a
runnable state.
25 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
void eMOS_TaskSleepMs(int msec)

This put the task to sleep for msec milliseconds. The resolution is that of the
system tick ISR.

void eMOS_TaskSleep(int sec)

This put the task to sleep for sec seconds. The resolution is that of the system
tick ISR and may not be accurate for real-time clock (RTC) purposes.

void eMOS_TaskHibernate(void)

This gives up execution and puts the process into hibernation. The process will
not be run again until awakened by another process.

int eMOS_TaskWakeup(int process_id)

This wakes up a hibernating process. This causes a task scheduling, so the
awakened task may be run “immediately,” depending on its priority.

You should not call this function while using the kernel stack; i.e. do not call this in
a function that is hooked to the system tick interrupt using
eMOS_SysTickISRHook.

In a low-power system, you may put the system in a power-down mode and use
an interrupt handler to wake up a key process as needed.

Return Values:

0 : success.

-1 : cannot find process with ID. Note: this function does not call the
eMOS_UserSyscallError function, since it may be common to blindly wakeup
a process regardless whether it is actually hibernating or not.

int eMOS_TaskKill(int pid)

This kills a process. pid must not be zero.

Return Values:

0 : success.

ERR_PID_NOT_FOUND : cannot find the process with ID or if pid is zero.
26 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Interrupt Handler (ISR) API
These API functions allow your interrupt handler to use the kernel stack, and thus do
not take up any resources on the process stacks, and on exit, cause an immediate
task switch if needed. This can be useful if the ISR wakes up a task using
eMOS_TaskWakeup() and wants the new task to run as soon as possible.

void eMOS_ISREntry(void)

This saves the user context (on the current process’ stacks) and switches to the
kernel stack.

void eMOS_ISRExit(int schedule)

This exits from the ISR. If schedule is non-zero, it causes an immediate task
scheduling. Otherwise, it restores the user context.

The Scheduler API
The Scheduler API can be called by in interrupt handler.

void eMOS_SchedOff(void)

This temporarily stops the scheduling. This is less drastic than disabling interrupts
and not allowing the system tick interrupt handler to run. This may be useful to
prevent data corruption of library functions due to multitasking, e.g., printf.

Note that the system tick ISR still operates and the sleeping tasks’ sleep timer and
any health monitor still gets decremented.

void eMOS_SchedOn(void)

This restarts the scheduler.

INTR_OFF()

This disables interrupts. It stops the multitasking kernel and should only be used
in cases where eMOS kernel data is accessed. Since there is only one single
kernel stack, interrupts are disabled during system calls.

Interrupt should only be disabled for as short a time period as possible.

INTR_ON()

This enables interrupts.
27 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
MESSAGE PASSING
eMOS uses the QNX style of message passing: a message is an arbitrary number of
bytes of data that is copied between a sender and the receiver. Unlike mailboxes in
other RTOSes, messages are directly passed between the clients without kernel
overhead and without using a separate construct (e.g., a mailbox) in the kernel.
Messages are not interpreted by the system in any way. Message passing is more
robust than other forms of Interprocess Communication (IPC), as tasks have well-
defined synchronization points.

Message Passing is synchronous: the sender sends a message using
eMOS_MsgSend() and waits until the receiver receives the message and replies to it
before execution resumes. A receiver uses eMOS_MsgReceive() to wait for a
message. If a receiver calls eMOS_MsgReceive() and there is no pending message,
the receiver waits until a message is sent. Once received, the receiver continues
execution and eventually would use eMOS_MsgReply() to reply to the original
sender. Once a reply reaches the original sender, it becomes unblocked and its
execution continues.

While a message received is usually followed closely by the reply, the receiver may
choose to interleave receive and reply calls with other receive and reply calls as long
as a receive call is followed by its corresponding reply call at some points.

Typical call pattern:

...
eMOS_MsgReceive(&sender_id, ...
... // does something
eMOS_MsgReply(sender_id, ...
...

sender: receiver:

....
// sends & waits until receiver reply

// continues processing
eMOS_MsgSend(...

....

...
// gets a message
eMOS_MsgReceive(...
// does processing
...
// replies to and unblocks sender
eMOS_MsgReply(...
28 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Unusual but also valid call pattern:

...
eMOS_MsgReceive(&sender1_id, ...
eMOS_MsgReceive(&sender2_id, ...
... // does something
// reply out of order, valid
eMOS_MsgReply(sender2_id, ...
eMOS_MsgReply(sender1_id, ...
...

Typically with the message passing system, you divide your tasks into server tasks
and client tasks. A server task uses the “receive” function to listen for requests and
client tasks use the “send” function to ask for services.

An example:

server:

while (eMOS_ReceiveMsg(&sender_id, buf, sizeof (buf)) >= 0)
{
... // perform task
eMOS_ReplyMsg(sender_id, replybuf, sizeof (replybuf));
}

...

client:

if (eMOS_SendMsg(server_id, sendbuf, sizeof (sendbuf),
requestbuf, sizeof (requestbuf)) >= 0)

{
... // perform task
}

29 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
To summarize:

Sending a message always blocks the sender until the receiver replies.

Receiving a message blocks the receiver if there is no message pending.
Otherwise, the data is copied immediately from a pending “message send.”

Once a receiver receives a message, it needs to reply to the original sender so to
unblock the sender. Message reply is not blocking, although it causes scheduling
to happen so that the original sender may run.

eMSO_MsgSend() and the
receiver is not waiting for a

Ready

Send Blocked

eMOS_MsgSend() and the

receiver calls
eMOS_MsgReceive()

Reply Blocked

Receiver calls eMOS_MsgReply()

State transitions of a task sending a message via eMOS_MsgSend()

message

receiver is waiting for a
message

Ready

Receive Blocked
eMOS_MsgReceive() and
there is no pending message

A sender calls eMOS_MsgSend()

State transitions of a task receiving a message via eMOS_MsgReceive()

Process message and calls eMOS_MsgReply() to unblocked sender.
No state changes.
30 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
The message passing primitives are the fundamental IPC mechanisms in eMOS, and
they are tightly coupled to scheduling. When there is no need for task switching or
blocking, data is copied immediately with the effect that the operation is very fast. If
there is no message available, tasks are immediately blocked from execution so other
tasks may run. Neither the user nor the kernel has to make independent decisions
regarding sychronization and task scheduling, increasing the clarity of the user code
and the robustness of the system design. Overall, this gives a very responsive system
performance while avoiding many of the pitfalls with other IPC mechanisms such as
mailboxes and semaphores.

The lengths of the buffers used in a send or reply operation may differ between the
message sender and receiver. An eMOS message passing function always uses the
shorter of the lengths specified (to avoid any possibility of buffer overflow) and returns
the actual length used as its return value. In the case of eMOS_MsgSend, there are
two buffers (the send buffer and the request buffer), and the system returns the length
of the reply message.

Knowing the actual lengths of the messages passed between the sender and receiver
allows your code to determine if there are mismatches due to data structure changes,
and makes it easier to implement protocol such as transmitting a large buffer by
breaking it into smaller chunks.

Asynchronous Send
While synchronous message passing is the norm, sometimes it is useful to have an
asynchronous alternative. eMOS provides the function eMOS_MsgAsyncSend for
sending an unsigned word (16 bits for AVR) to a message receiver. This function does
not block the sender.

The receiver uses the function eMOS_MsgReceive to receive a message, regardless
of whether is synchronous or asynchronous. A receiver determines the message type
by checking the process id of the sender, which is set to negation of the process id if
the message is asychronous. A receiver should not reply to an asynchronous
message, as the sender is not waiting for a reply.

To read the 16-bit message, the receiver may use the following code fragment,
(assuming the buffer is larger than 16 bits):

...
eMOS_MsgReceive(&pid, buffer, sizeof (buffer));
if (pid < 0) // asynchronous message

{
int msg = *(unsigned *)buffer;
pid = -pid; // recover the actual pid of the sender
31 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Avoid Deadlocks
If two tasks send to each other, then they are in a deadlock, since both tasks would be
send-blocked. This applies to more than 2 tasks too: if you arrange all the tasks that
send to others in a chain, the chain should not form a loop.

Priority Inversion
Message passing also avoids priority inversion, one of the sources of latent bugs in a
priority-based OS. The most famous example of a priority inversion problem is when
the Mars Pathfinder robot would reset itself after some hours of operation.

Priority inversion happens when a high-priority task cannot execute because a critical
resource it needs is held by a low-priority task. The problem comes in when that low-
priority task in turn is interrupted and cannot run because a medium-priority task
becomes runnable. The medium-priority task then continues to run, preventing the
low-priority task from running, which in turn never releases the critical resource that
the high-priority task needs to resume execution.

This is exactly what happened on Mars: a shared information bus was used for
communication between different components of the Pathfinder and priority inversion
prevented a high-priority task from running, making the watchdog timer reset the
system. Since the information bus was shared, access to it was regulated by using a
mutex. In the Pathfinder, a high-priority but infrequently run Information Bus
Management task moved certain data in and out of the information bus and a low-
priority meterological task used the information bus to publish its data. Under some
conditions, the low-priority task held the mutex and the high-priority task waited until
the mutex was released. However, in the brief period that the low-priority task had the
mutex, a medium-priority communication task, which did not use the information bus,
preempted the low-priority task’s execution. Thus, even though the high-priority task
had a higher priority than the communication or the meterological task, it did not get
run.

Under a message passing system like eMOS, once a task receives a message, the
receiver task assumes the task priority of the sender task, since it is performing the
task on the sender’s behalf. The task priority reverts once a reply message is sent
back to the sender. The tasks are in well-defined runnable or blocked states.
32 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
The Message Passing API
int eMOS_MsgSend(int receiver_id, void *sendbuf, int
sendlen, void *requestbuf, int reqlen)

sends a message to the process with the process ID pid. sendbuf is the data to
be sent and requestbuf is the buffer to store the reply result.

If the receiver process is waiting for a message, i.e. in the RECEIVE_BLOCKED
state, then the data is copied to the receiver’s buffer immediately and the receiver
process is unblocked. The sender is blocked and put into the REPLY_BLOCKED
state. The scheduler is then invoked and the receiver process will run at some
point depending on its priority and the priorities of the other runnable processes.

If the receiver process is not waiting for a message, then the sender is blocked
and put into the SEND_BLOCKED state. Pending messages are linked in priority
order of the sender processes to the receiver process, so a higher priority sender
will have its message processed first.

Return Values:

>= 0 : the length of the message actually copied into requestbuf.

ERR_PID_NOT_FOUND : cannot find process with ID.

int eMOS_MsgAsyncSend(int receiver_id, unsigned msg)

asynchronously sends a 16-bit message msg to the process with the process ID
pid. The call returns without blocking the sender.

If the receiver process is waiting for a message, i.e. in the RECEIVE_BLOCKED
state, then msg is copied to the receiver’s buffer immediately, and the receiver
process is unblocked.

If the receiver process is not waiting for a message, then eMOS creates an
internal data structure to store the message and chains the information to the
receiver process. eMOS treats pending messages from eMOS_MsgSend and
eMOS_AsyncSend the same way, and links them in the priority order of the
sender processes to the receiver process, so a higher priority sender will have its
message processed first.

Return Values:

0 : success.

ERR_PID_NOT_FOUND : cannot find process with ID.

ERR_OUT_OF_MEMORY : cannot allocate memory for internal data structures.
33 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
int eMOS_MsgReceive(int *ppid, void *receivebuf, int reclen,
int timeout_ms)

receives a message. If timeout_ms is non-zero, then waits at most for
timeout_ms milliseconds.

The data is copied from the sender call to the receiver’s buffer receivebuf
directly. If the sender and receiver’s message lengths differ, the shorter of the two
will be used.

If there is no message pending, the process is blocked and put into the
RECEIVE_BLOCKED state until a message arrives or until the timeout_ms value
expires.

If there are pending messages from sender processes, the highest-priority sender
is removed from the pending sender list and the data is copied to the argument
buffer. The function returns without blocking the calling task.

Return Values:

>= 0 : the length of the message actually copied to receivebuf.

ERR_SENDER_NOT_SEND_BLOCKED : the sender process internal state is not
in SEND_BLOCKED. This is an internal eMOS system error.

ERR_TIMEOUT_EXPIRES: the timeout_ms value expires.

*ppid : the process ID of the message sender. If the received message is from
eMOS_MsgAsyncSend, then the returned sender ID is the negation of the actual
sender’s process ID.

int eMOS_MsgReply(int sender_id, void *requestbuf, int
reqlen)

replies to a previously sent message. Usually a reply call is made as soon as a
message is received and processed. However, it is possible to reply to a sender in
an arbitrary order differing from the message receive order.

Keep in mind, though, that a receiver process executes with the priority of the
sender process until a reply message is sent to the sender. At that time, the
priority of the receiver process reverts to its original priority. If you interleave
multiple eMOS_MsgReceive with eMOS_MsgReply calls in an unusual order, the
running priority of the receiver process may not be as expected.

The data is copied from the receiver to the original sender’s buffer directly. If the
sender and receiver’s message lengths differ, the shorter of the two will be used.

The reply function does not block the calling process, and unblocks the original
sender.
34 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
It is your responsibility to reply to received messages. Otherwise, the sender
process will wait forever. It is, however, an error to reply to an asynchronous
sender.

Return Values:

>= 0 : the length of the message actually copied into the original sender’s
requestbuf.

ERR_PID_NOT_FOUND : cannot find sender process with ID.

ERR_SENDER_NOT_REPLY_BLOCKED : the sender process internal state is
not in REPLY_BLOCKED. This means that either you use an incorrect sender ID,
or there is an internal eMOS system error.
35 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
MUTEX
Mutex (Mutually Exclusive access to shared resources) is a traditional mechanism for
controlling shared resource access. A mutex is either available or not available. If a
task tries to obtain a lock on a mutex, the mutex is returned immediately if it is
available. Otherwise, the task waits until it becomes available. When a task is done
using the resources, it releases the mutex so other tasks may continue.

An example of mutex usage is a double buffer display: a normal task receives
command input to “draw” on a memory buffer. At some interval (e.g. 10 times a
second or every 100 milliseconds), another task copies the memory buffer out to the
actual display buffer. In this scenario, a mutex can be used to control access to the
memory buffer:

unsigned char memory_buffer[...];

Drawing Task:
...
while (1)

{
// commands come in as messages
eMOS_MsgReceive(....

eMOS_MutexLock(...
memory_buffer[...] = ...
eMOS_MutexUnlock(...
eMOS_MsgReply(...
...
}

Display Buffer Update Task:
...
while (1)

{
eMOS_MutexLock(...
hardware_display... = memory_buffer...
eMOS_MutexUnlock(...
eMOS_TaskSleepMS(100);
}

36 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Priority Inversion and Mutex
Priority Inversion is a major problem in systems using mutex. In fact, the
aforementioned Mars Pathfinder used a mutex to arbitrate exclusive access to the
shared information bus. Therefore, this issue must be addressed for a mutex to be
truly useful.

Two possible solutions exist: a) priority inheritance, where the priority of a task holding
a mutex is temporarily raised to the priority of a task wishing to obtain a lock on the
mutex, and b) priority ceiling, where the user at mutex creation time specifies the
maximum priority level a task holding a mutex should be raised to, and promises that
no task requesting the mutex would have a priority higher than this preset limit.

Priority inheritance is more flexible and uses the same semantics as used by the
message passing API and therefore is the adopted solution for the eMOS mutex. The
downside is that the mutex priority may get raised multiple times depending on the
tasks requesting a lock.

The Mutex API
int eMOS_MutexCreate(void)

This creates a mutex and returns a mutex ID.

Return Values:

>= 0 : mutex ID.

mutex

low priority task preempted
by medium priority task

high priority task waiting
on the mutex held by the low
priority task

Not runnable tasks:

medium priority task

Potential Priority Inversion Caused by Mutex Without Priority Inheritance

Running task:
37 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
ERR_OUT_OF_MEMORY : cannot allocate memory for mutex structure.

int eMOS_MutexDestroy(int mutex_id)

Given its ID, this destroys a mutex. Any pending tasks will be unblocked.

Return Values:

0 : success.

ERR_MUTEX_NOT_FOUND : cannot find the mutex with ID.

int eMOS_MutexLock(int mutex_id, int timeout_ms)

This locks a mutex and, if it is not available, waits until it becomes available. If
timeout_ms is non-zero, then it will wait at most for timeout_ms milliseconds.

Returns 1 if successful or a negative number otherwise.

Pending tasks are ordered by the tasks’ priorities. If a high-priority task tries to
lock a mutex when it is not available, the task currently holding the lock will get its
priority raised to the high-priority task’s level until it releases the lock.

If the mutex is already owned by the running task, it returns immediately with a
success status.

Return Values:

1 : success.

ERR_MUTEX_NOT_FOUND: cannot find the mutex with ID.

ERR_OUT_OF_MEMORY : cannot allocate memory for mutex structure.

ERR_TIMEOUT_EXPIRES: the timeout_ms value expires.

int eMOS_MutexUnlock(int mutex_id)

This unlocks a mutex. If there are tasks waiting to lock the mutex, the one with the
highest priority gets the lock and is removed from the wait state.

Return Values:

1 : success.

ERR_MUTEX_NOT_FOUND : cannot find the mutex with ID.

ERR_MUTEX_NOT_LOCKED : mutex is not in locked state.

ERR_MUTEX_NOT_OWNER : calling process is not the owner of the mutex.
38 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
COM PORT MODULE
The Com unit provides a uniform buffered input/output IO interface to serial devices.
At the low level, it requires an interface function (could be an ISR routine) to read or
write to the device, which can be an UART, a simple IO port, a SPI port, etc.

The Com unit operates on two levels: it presents a high-level interface (to task
functions) for reading and writing bytes of data, and it interfaces to the low-level
device port (using asynchronous interrupt handler if available). The purpose of the
Com unit is to “even out” the datastream between these two layers. Internally it uses a
FIFO buffer to manage the dataflow between these two levels of operations.

The Com Unit Descriptor

Since the Com unit can interface with a diverse number of interfaces with a sizable
number of control variables, you use a Com unit descriptor (either flash or RAM
based) to describe your device to the Com unit. A device can have an input port, an
output port, or both:

typedef struct
{
unsigned timeout; /* Recv time out */
unsigned char eol; /* End of line charactor */
unsigned char wr_size; /* Write FIFO size */
unsigned char rd_size; /* Read FIFO size */
unsigned char *tx_port; /* Transmit port adderss */
void (*tx_ena)(void); /* Transmit enable IRQ

fucntion pointer */
void (*tx_dis)(void); /* Transmit disable IRQ

fucntion pointer */
unsigned char *rx_port; /* Receive port address */
void (*rx_ena)(void); /* Receive enable IRQ

fucntion pointer */
void (*rx_dis)(void); /* Receive disable IRQ

fucntion pointer */
} COM_DESC_TYPE; /* COMM device descriptor */

For an input-only device, you would leave the output/receive fields initialized to zero.
Likewise, if it is an output-only device, you would leave the input/transmit fields
initialized to zero.
39 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
To use the Com unit for a device, you open the the device using eMOS_ComOpen, and
then use eMOS_ComRead and eMOS_ComWrite to do buffered IO. The low-level
single byte IO is done using memory indirection (i.e., through the tx_port and
rx_port addresses above). This works for the AVR even though it has a separate IO
space, as the IO space is mapped to the data memory space.

timeout is the maximum number of milliseconds a process waits for an
eMOS_ComRead call.

eol is the end of line character. eMOS_ComRead would also return if the end of line
character is read.

rd_size and wr_size are the sizes of the internal input and output FIFO. They must
be either 0 (if that IO operation is not supported) or a value between 16 and 256.

The IRQ enable and disable functions are called to prevent the internal buffers being
corrupted when the Com unit is operating.

Device Number

To simplify operations, the Com unit defines 4 device numbers (0 to 3), which can be
associated with a Com unit descriptor by using eMOS_ComOpen(). If you have a
source license, you may increase the number of devices.

Device Interrupt and FIFO Size
The best throughput is to use your device IO interrupts, if available. The Com unit is
written such that the IO interrupts are enabled and disabled as needed.

The read FIFO size rd_size should be based on how fast the data is coming in and
how fast they are being read. If you expect a lot of data coming in from the device
before a task would read the data from the FIFO, then you should choose a large
FIFO size.

Likewise, the write FIFO size wr_size should be based on how fast the data is
coming from the high-level task vs. how fast the low-level output operates. If you
expect the task to write a lot of data and the low-level output is relatively slow, then
you should choose a large FIFO size.

Com Unit API
void eMOS_ComInit(void)

This initializes the COM module.

void eMOS_ComTerm(void)

This terminates the COM module and deallocate all memory.
40 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
int eMOS_ComOpen(int dev, COM_DESC_TYPE *cd)

Given the Com unit descriptor and a device number, this opens a Com device.

Return Values:

0 : success.

ERR_BAD_ARG : incorrect argument (e.g. out-of-bounds dev number).

ERR_ALREADY_OPEN: com port is already open.

ERR_OUT_OF_MEMORY: cannot allocate memory for the buffers etc.

ERR_BAD_COM_DESC_TYPE: cd does not contain valid or sufficient
information.

int eMOS_ComClose(int dev)

Given the device number, this closes a Com device and deallocates memory.

Return Values:

0 : success.

ERR_BAD_ARG : incorrect argument.

ERR_COM_NOT_OPEN : the com device has not been opened.

ERR_INTERNAL_ERROR: some internal error has occurred.

int eMOS_ComRead(int dev, unsigned char *buf, int len)

This reads a series of bytes into buf from the device with device number dev.
The call waits until either: len bytes has been read, or the end of line character
(as defined in the Com unit descriptor) has been read, or the timeout period has
been reached.

Return Values:

> 0 : number of bytes read.

ERR_BAD_ARG : incorrect argument.

ERR_COM_NOT_OPEN : com port not open.

void eMOS_ComWrite(int dev, unsigned char *buf, int len)

This writes a buffer of length len to the device with the device number dev. The
data is copied to the internal FIFO. If there is not enough space in the FIFO, the
process waits until more space is freed up by eMOS_ComISRPut calls.
41 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Return Values:

> 0 : number of bytes written.

ERR_BAD_ARG : incorrect argument.

ERR_COM_NOT_OPEN : com port not open.

void eMOS_ComISRGet(int dev)

This reads a byte from the device. May be called by the target device’s “byte
available” ISR or called as a normal function call. The byte is put into the Com unit
buffer, to be read by using eMOS_ComRead().

void eMOS_ComISRPut(int dev)

this takes a byte (if available) from the internal FIFO and writes it to the output
port. May be called by the target device’s “device available” ISR or called as a
normal function call.
42 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
MEMORY MANAGEMENT
Many RTOSes avoid using dynamic memory management due to the potential
fragmentation issues and the nondeterministic time needed for allocation and
deallocation. However, we believe that a well-designed memory allocator will
eliminate most fragmentation issues (except the ones caused by the user’s usage
pattern) and the time used by the typical memory management calls will fall within
reasonable bounds. In return, the users do not need to pre-analyze how many tasks
are needed, to hand-allocate arrays as stacks, etc., resulting in a cleaner system
design in the end.

The memory allocator uses a best-fit always-merge algorithm. The free memory list is
searched to find the smallest sized block sufficient for the allocation request and when
a memory block is deallocated, it is merged with the neighboring free blocks to obtain
the largest size free block possible. The former minimizes holes created by the
allocation and the latter minimizes fragmentation.

free block #1 free block #2

memory addresses

block to be freed

memory addresses

(link)

free block

Free blocks are merged aggressively to reduce fragmentation

(after call to
eMOS_MemFree)
43 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
eMOS uses memory allocation in three cases: to allocate the Task Control Block for a
task and its stack, when a mutex is created (or destroyed), and when an asynchrous
message is sent to a process not currently waiting for a message. (Synchronous
message passing carries no memory allocation overhead in the kernel.)

When you call eMOS_SysInit() to initialize eMOS, you supply the starting address
and the size of the free memory space for eMOS’s memory allocator to use.
&_bss_end is a good value to use for the starting address, as _bss_end is the label
created by the ImageCraft linker to designate the end of the global data area used by
your program:

extern int _bss_end; // defined by ICC
...
eMOS_SysInit(&_bss_end, 1024*6); // 6K of free space
...

You can use eMOS_MemInit() to add additional free space blocks to the system.

Resource Tracking
You can optionally enable eMOS to provide resource tracking. If enabled, allocated
memory is chained off the process structure. You can free all the memory with a single
API call, or all the memory will be freed if the process is killed or exits.

The Memory Management API
int eMOS_MemInit(void *address, unsigned size)

This adds an additional block to the free space pool. Returns 0 if successful, or a
negative number otherwise (e.g.: memory cannot be correctly written).

Return Values:

0 : success.

ERR_CANNOT_WRITE_FREEMEM : cannot correctly write to the first byte of the
free memory.

ERR_CANNOT_WRITE_FREEMEM_END : cannot correctly write to the last byte
of the free memory.

void eMOS_MemEnableTracking(void)

This enables memory tracking for the current process. The behavior is undefined
if not called within a task context.
44 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
void eMOS_MemDisableTracking(void)

This disables memory tracking for the current process. The behavior is undefined
if not called within a task context.

void *eMOS_MemAlloc(unsigned size)

This returns a memory block or zero if none is available. The content of the
memory blocked will be zeroed out.

Return Values:

> 0 : pointer to allocated memory.

0 : out of memory.

void eMOS_MemFree(void *p)

This frees a memory block. It is OK to free memory with memory tracking turned
on, although it will decrease the performance slightly.

void eMOS_MemFreeAll(void)

This frees all allocated memory for the current process. Only meaningful if
memory tracking is enabled. This is done implicitly when a process is killed or
exits.

unsigned eMOS_MemSpaceAvail(void)

This returns the amount of free space in bytes. Note that due to allocation
overhead and fragmentation, not all space can be used.

unsigned eMOS_MemSpaceUsed(void)

This returns the amount of space used. Note that due to allocation overhead and
fragmentation, the amount used will be larger than the total number of bytes
requested.

Note: Users must be careful not to overwrite memory, or to free a memory pointer that
they did not allocate, or to free a memory block twice, etc. Otherwise, data corruption
will happen.
45 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
THE VIRTUAL WATCHDOG
eMOS provides a virtual watchdog system that can optionally work with the hardware
watchdog system.

Virtual Watchdog

In the basic form, a watchdog wakes up periodically and sees if it has been “tickled.” If
not, then it assumes the system has failed and reset the system. While software
engineers like to view a watchdog only as a failsafe of last resort, in the embedded
world, there are too many war stories about insufficient use of watchdogs.

For example, the NASA 1994 Clementine’s mission to visit the asteroid Geographos
after 2 successful months surveying the Moon was not completed because floating-
point exceptions eventually caused the thruster controllers to dump all the fuel. The
software team insisted on not using the built-in hardware watchdog timer, resulting in
the error conditions not being detected until it was too late. (That particular situation
probably would have called for a more sophisticated watchdog system than the basic
one, but the basic watchdog might have helped the situation.)

The eMOS virtual watchdog task executes in a forever loop. Whenever it wakes up, it
checks the health of the system and then goes back to sleep. Between the times it
runs, all runnable tasks except the ones executing in EMOS_PRIO_MAX priority level
must “feed a cookie” to the watchdog at least once (this can be delayed per process,
see below). The virtual watchdog also checks the process state to ensure that it is
correct with respect to the list that the process belongs to, e.g., a process in the sleep
list must be in a sleep state.

When you enable the virtual watchdog, you specify a minimum and a maximum
sleeping time in milliseconds. The watchdog task is created with a priority of
EMOS_PRIO_MAX-1 and thus may not run if your system has maximum priority tasks
that use up all the processing time. This also mean that by definition and design,
maximum priority tasks do not need to tickle the watchdog. As the highest priority
tasks should be used for dealing with the most urgent events, this allows them to run
without the overhead of tickling (AKA “feeding a cookie to”) the virtual watchdog.

Processes that are not runnable, e.g., a server process waiting to receive a message,
will not be checked by the virtual watchdog (except for the consistency of its internal
state value). However, the process must still feed the watchdog frequently “enough”
when it is running.

Delaying the Virtual Watchdog

If enabled, every runnable task with a priority lower than EMOS_PRIO_MAX must feed
the virtual watchdog at least once between the times when the virtual watchdog task
runs by calling eMOS_VWatchdogFeedCookie(). This may be cumbersome for a
46 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
task that does a sequence of processing steps, then sleeps (or waits for a message),
and then does some other processing and sleeps, etc. While it is possible to feed
cookies to the watchdog in multiple places, to streamline programming, eMOS allows
a process to delay having to feed the virtual watchdog.

A process may call eMOS_VWatchdogDelayCheck(unsigned msec) to disable
the watchdog from checking the health status of the process. msec has an upper
bound of 6554 milliseconds or approximately ~6.5 seconds. The process must call
eMOS_VWatchdogFeedCookie() before the delay period expires, and the delay
period is canceled once the watchdog is fed. The delay is per process basis and does
not affect checking of other processes.

Task With Multiple Cookie Calls Task with Delay Check Call

while (1)

{

eMOS_VWatchdogFeedCookie(..
) ;

// do something

// sleep

eMOS_VWatchdogFeedCookie(..
) ;

// do something

// sleep

while (1)

{

eMOS_VWatchdogDelayCheck(..
) ;

// do something

// sleep

// do something

// sleep

...

eMOS_VWatchdogFeedCookie(..

Please feed watchdog!
47 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Which one to use is dependent on your program logic. The delay check is convenient
as an alternative for multiple feeding, but process sleeping or hibernation time is not
deducted from the delay time.

Hardware Watchdog

The virtual watchdog should be used in conjunction with the hardware watchdog if
possible. When used in this manner, the virtual watchdog checks for the health of the
entire tasking system, and the hardware watchdog provides a hardware failsafe in
case the virtual watchdog is not sufficient.

Pitfalls
Although the virtual watchdog is very useful in detecting problems, it is not foolproof.
The biggest source of problem results from memory corruption, and since
microcontroller MCUs typically do not have memory protection mechanisms, there is
no way to eliminate this potential problem completely. For example, the memory might
be corrupted such that process data structures are damaged and then the watchdog
functions might not operate reliably due to false memory content. It is very likely,
however, that memory corruption would cause the system to fail in some obvious
ways, so while the watchdog may not catch all the problems, it is still an important
feature that you should exploit. In particular, when combined with a hardware
watchdog, the chance of the “watchdog team” detecting a misbehaving system is
high.

Another pitfall is that watchdog cannot catch logic errors such as indefinite sleep
(unless you use a delay check), or processes that are in a deadlocked state (e.g., two
processes sending messages to each other). Those are beyond of the scope of the
watchdog system.

Since the virtual watchdog is a normal eMOS task (with the highest priority), if you
disable the kernel, or if you have a highest priority task hogging the system, it may
prevent the virtual watchdog task from running. Therefore, you should use the virtual
watchdog in conjunction with the hardware watchdog.

Finally, hardware anomalies (including alpha particles affecting the content of SRAM
cells) can be a real problem under certain conditions. Even though the virtual and
hardware watchdog may not help, your chances of detecting a problem are higher
with them working properly.
48 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
The Virtual Watchdog API
VWATCHDOG_DESC flash descriptor

The virtual watchdog is configured by initializing a vwatchdog descriptor in flash,
which is defined in emos.h:

typedef struct
{
void (*wd_init)(void);

/* function to initialize the HW watchdog */
void (*wd_reset)(void);

/* function to reset the HW watchdog */
int sleep_min;

/* min number of msec for the watchdog task to
sleep */

int sleep_max;
/* max number of msec for the watchdog task to

sleep */
int enabled;

/* enable the virtual watchdog? */
} VWATCHDOG_DESC;

extern __flash VWATCHDOG_DESC vwatchdog;
/* must be initialized by user */

In the user module (typically called avr_usermod.c), you would initialize
vwtachdog with the desired values, e.g.

void wd_init(void);
void wd_reset(void);
...
__flash VWATCHDOG_DESC vwatchdog = {

wd_init,
wd_reset,
1000,
2000,
1

};
49 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
In this example, the virtual watchdog is enabled, with a sleep timeout period of
between 1 to 2 seconds. The user also provides the two hardware watchdog
functions: wd_init for initializing the hardware watchdog, and wd_reset to tickle the
hardware watchdog. The hardware watchdog timeout period must of course set to be
longer than the virtual watchdog’s maximum sleep time.

Storing and initializing the descriptor in flash memory lessens the possibility of the
virtual watchdog being rendered ineffective by errant program execution.

void eMOS_VWatchdogStart(void)

Checks to see if the enabled field of the vwatchdog descriptor is nonzero, and if
so, creates the virtual watchdog task and calls the hardware watchdog init
function if specified.

This function should be called the user supplied function eMOS_UserSysStart.
The reason this is not called by an eMOS function (e.g. eMOS_SysStart) is
because this would allow the linker not to link in the virtual watchdog code if you
do not use the feature (thus reducing your code size requirements).

void eMOS_VWatchdogFeedCookie(int status)

This “feeds a cookie” to the virtual watchdog and asserts the task’s health_status.
To provide a safety check, status must have the value TASK_IS_HEALTHY.
Otherwise, this will be viewed as an errant call and the virtual watchdog task will
be invoked immediately.

This also cancels any “delay check.”

void eMOS_VWatchdogDelayCheck(unsigned msec)

This starts a timer and delays virtual watchdog on this process. The maximum
msec value is 6554 (milliseconds) or approximately 6.55 seconds. The timer is
based on the system tick, and thus is only approximate.

Before the timer expires, the process must feed the virtual watchdog. Note that
the delay time is not affected by the process sleeping or hibernating, e.g., if a task
sleeps forever (accidentally), the delay timer will still expire.
50 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
USER-SUPPLIED CODE
You need to provide the following functions and initialized data to get eMOS running
on your target. A basic template is provided in the source file avr_usermod.c
(atm256_usermod.c for ATM256). All user supplied functions have the form
eMOS_User.... You may also make some changes to emos.h if you have a source
license to recompile the source code. A copy of avr_usermod.c and
atm256_usermod.c are provided, and you can use them as starting points for your
needs.

To make changes to the hardware-specific interface, or to adapt eMOS to a different
AVR chip, it is easiest to use the Application Builder in the ICC IDE to generate code
for the timer, the watchdog, UART, etc.

Application Builder

If you use the Application Builder to generate the system tick timer interrupt or the
UART initializations etc., be sure to:

remove the sei() at the end of the init_devices function. sei() enables the
interrupt and this needs to be delayed under eMOS.

remove the call to timer0_init() in the init_devices function. Instead, call
the function in eMOS_UserSysStart function (see below). The
timer0_init() function enables the system tick timer interrupt and this needs
to be done in the right place.

change the

#pragma interrupt_handler timer0_comp_isr:iv_TIM0_COMP

to

#pragma interrupt_handler eMOS_SysTickTimer:iv_TIM0_COMP

if you use the watchdog, remove the watchdog enable function in the
init_devices function. Instead, use the Virtual Watchdog to work with the
hardware watchdog. See THE VIRTUAL WATCHDOG.

These changes are reflected in the supplied avr_usermod.c and
atm256_usermod.c.

System Initialization and Start

When you call eMOS_SysInit, it in turn calls a user-supplied function:

void eMOS_UserSysInit(void)

This function performs device-specific initializations.
51 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
void eMOS_UserSysStart(void)

This function performs device-specific startup. Typically, you call the timer
initialization and enable the timer interrupt here (e.g. call timer0_init()). If you
use the virtual watchdog, you must also call eMOS_VWatchdogStart in this
function. Calling eMOS_VWatchdogStart in a user-supplied module instead of
in the eMOS system code allows the linker not to link in the virtual watchdog code
if you do not use the feature (thus reducing your code size requirements).

emos.h Changes: Priority Levels and Tick Time

Priority levels can be changed:

EMOS_PRIO_MAX

This is the highest-priority level. This defines the number of priority levels in
eMOS. The default is 4. EMOS_PRIO_MIN, the lowest-priority level, should not be
changed from 1, as the priorities are used as indexes to a zero-based array
internally, and 0 should be reserved for the system idle task.1

_TICK_TIME and TASK_TIME

If you make any changes to the system tick interrupt frequency, you should
change these constants to match the changes. _TICK_TIME is the number of
milliseconds for the tick interrupt. TASK_TIME is the number of ticks of the
timeslice, or the amount of time a task executes (unless it is blocked) before the
scheduler runs a different task. TASK_TIME is usually 50 ms or 5 ticks.

A shorter TASK_TIME period may give more tasks a chance to run, but may decrease
overall system performance, as task switching takes time, around 450 cycles (see
eMOS RESOURCE USAGE). With an 8-MHz clock, 10 millisecond corresponds to
approximately 80,000 AVR instructions (minus some eMOS overhead) for each
system tick and 400,000 instructions for each time slice. So, a time slice of 50
milliseconds corresponds to just over 0.1% overhead for task scheduling. A shorter
system tick interrupt period may increase the responsiveness to certain hard real-time
events but will decrease overall system performance as the interrupt handler
overhead starts to have more of an effect.

1.The system will prevent you from assigning priority 0 to any other task.
52 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Virtual Watchdog

To increase the robustness of the virtual watchdog system, its operations are
controlled by a flash-based descriptor. See THE VIRTUAL WATCHDOG. You need to
initialize the flash-based description vwatchdog with appropriate values. To enable
the virtual watchdog, set the “enabled” field with a value of 1. Otherwise, set it to 0 to
disable the virtual watchdog.

If the virtual watchdog is enabled and you want to also use the hardware watchdog,
you will need to provide a function to initialize the hardware watchdog and a function
to reset the hardware watchdog.

Error Functions

If the stack checking detects an error or when the virtual watchdog detects an error,
the following user-supplied function is called:

void eMOS_UserSOS(int code, PROC_DUMP *pd)

This function informs the user of a catastrophic event. code is the error code (see
GETTING STARTED) and you can use the system function char
*eMOS_ErrorString(int code) to convert the code into an ASCII string.
PROC_DUMP is a subset of the internal process data structure:

typedef struct
{
int pid;
char __flash *name;
unsigned char state;
void *sp, *sp_bot;
void *sw_sp;
} PROC_DUMP;

sp is the hardware stack pointer, sw_sp is the software stack pointer, and
sp_bot is the lower bound for the stacks.

Of course if the system is very corrupted, the data may not be correct, but it still alerts
you that something has gone awry.

The eMOS_UserSOS function is responsible for informing the user of the error
condition somehow. Obviously, this is most useful during development where the
device may blink an LED, log the data in NVRAM, sound a buffer, etc. In regular good
practice, it is highly recommend that some observable actions should be taken even in
production release, e.g.: in another embedded system “war story,” a device was
53 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
responding slower than expected (this is in the field, where the device was already in
production). Eventually they found that an unexpected error was causing the device to
reset hundreds of times in a second, thus giving a very slow response time.

After the eMOS_UserSOS function is called, if the error comes from the virtual
watchdog and if the hardware watchdog is enabled (i.e., the virtual watchdog is
enabled and the hardware watchdog initialize function is defined), eMOS locks out all
interrupts and loops indefinitely until the hardware watchdog kicks in. If the error
comes from stack checking, or if the hardware watchdog is not used, then eMOS calls
the following function:

void eMOS_UserSysReset(void)

This function resets the system. In the simplest case, it can jump to the system
reset vector. However, if you want to put peripheral pins in some safe state and
perfoem other system-specific reset considerations, you can do these before
resetting.

void eMOS_UserSyscallError(char __flash *func, int code)

This function processes a system error. During development, you most likely want
to display the function name and the error code. A sample implementation looks
like this:

int eMOS_UserSyscallError(char __flash *func, int code)
{
cprintf(“Syscall error in function ‘%S’: %d %s\n”,

func,
code,
eMOS_ErrorCode(code);

return code;
}

For production builds, and if you have a source license, you can define the macro
NO_USERSYSCALLERROR in your project->options->compiler-
>Macro Defines. A system call simply returns the error code when there is an
error. See STACK CHECKING.
54 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
OPTIMIZING YOUR SYSTEM
Minimizing Resource Usage

If you have a source license, you may do the following to minimize resource usage:

disable stack checking by adding NO_STACKCHECK to Project->Options-
>Compiler->Macro Define(s). This saves 4 bytes per each process
structure and a small amount of code.

Eliminate calls to the system call error function by adding
NO_USERSYSCALLERROR to Project->Options->Compiler->Macro
Define(s). This eliminates call instructions and literal strings associated with
the error messages.

As these are useful features, these techniques should only be used if you are critically
running out of resources.

Using External Memory

You can also use external memory with eMOS. In the simplest case, you will need to
set up the memory interface registers (e.g. the XMCRA and XMCRB registers) in your
main function or in a modified C startup file, and then call eMOS_SysInit (see below)
with the starting address and the size of your memory. If you have discontiguous
memory chunks, you can use the function eMOS_MemInit to tell eMOS about
additional memory chunks.

Avoiding Task Time Dynamic Memory Allocation

If you create all your tasks and mutex in your main function before you call
eMOS_SysStart, you would minimize the time spent in memory allocation when the
tasks are running and thus make the system more deterministic.

Declaring a Task Function Using #pragma ctask

You should declare your task functions as ctask so the compiler will not generate
register saving and restore code that is not needed for top-level task functions. The
pragma must appear in the same source file where the task function is defined and
must appear before the function definition. For example:

#pragma ctask task1, task2, ...
void task1(void);
void task2(void);
...
void task1(void)

{
...
55 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
}
...
// in main() somewhere
eMOS_TaskCreate(“task1”, task1, ...
eMOS_TaskCreate(“task2”, task2, ...
...

The first two arguments to eMOS_TaskCreate are the task name and the function
name. You can find the macro EFN() defined in eMOS.h to create both arguments:

// in emos.h

// in emos.h
#define EFN(f) #f, f
...

// in your code
eMOS_TaskCreate(EFN(task1), ...
// expands to
// eMOS_TaskCreate(“task1”, task1, ...

System Tick ISR Hook

eMOS provides several hook functions for you to optimize your system’s performance.

void eMOS_SysTickISRHook(void (*func)(void));

If you have a periodic function that you need to perform, you can piggyback onto the
system tick interrupt (default 10 ms) and not use up another interrupt vector. It is very
important that your function does not take too long to operate, so it does not adversely
affect eMOS performance. The function will use the eMOS kernel stack for local
variable and function calls, and thus should not call eMOS_TaskWakeup.

You must not declare the function as an interrupt handler, but you should declare it as
ctask so that the compiler does not generate any unnecessary register-saving code:

#pragma ctask mytick_function
....
void mytick_function(void)

{
...
}

...

... // somewhere in your code
eMOS_SysTickISRHook(mytick_function);
...
56 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
System Idle Hook Function

void eMOS_SysIdleHook(void (*func)(void));

eMOS runs a “null task” when it is idle. In its entirety:

static void NullTask(void)
 {
 while (1)
 {
 if (emos_idle_function)
 (*emos_idle_function)();

eMOS_TaskYield();
 }
 }

It is created with the lowest priority (EMOS_PRIO_NULL or 0) and whenever it runs, it
just gives up and yields the CPU. If this task runs, then all the other tasks in the
system are not runnable. The eMOS_SysIdleHook function lets you hook into the
idle task. When the null task runs, it will call your function.

Disabling the System Tick Interrupt

If you want to minimize power consumption as much as possible, you can use the idle
hook function above and either stretch the system tick interrupt frequency or disable
the system tick interrupt altogether, and put the system in a low-power standby mode
or use the SLEEP instruction to put the CPU to sleep. You can arrange for the system
to wake up when a certain interrupt happens and restore the timer interrupt and the
rest of the system in a normal operation mode.

Temporarily Disabling the Scheduler

void eMOS_SchedOff(void);

This temporarily turns off the scheduler.

void eMOS_SchedOn(void);

This enables the scheduler.

This is useful to prevent multiple tasks from accessing non-reentrant C library
functions such as printf without the overhead of a mutex. Generally, using
eMOS_SchedOff() is not recommended, since it may prevent a high-priority task
from running. However, it does not disable a sleeping task’s sleep timers, nor does it
affect the virtual watchdog’s health monitor.
57 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
EXAMPLE
Here are some code fragments to demonstrate eMOS. The system reads a line from
the UART port and echoes the line out to the UART port when a linefeed is received.
First is the line output task:

#pragma ctask LineOutputTask, LineInputTask
...
void LineOutputTask(void)

{
int id;
char buf[20];

while (eMOS_MsgReceive(&id, buf, sizeof (buf)) >= 0)
// send buf to the UART

}

The line input task gets a character from the UART receive interrupt handler and puts
it in a buffer. When a \n is received, it sends it to LineOutputTask:

int cinput;

void LineInputTask(void)
{
char outbuf[20];
int index = 0;

while (1)
{
eMOS_Hibernate();
// wake up by UART handler
outbuf[index++] = cinput;
if (cinput == ‘\n’ || index == sizeof (outbuf))

{
eMOS_SendMsg(output_process_id, outbuf,

index, 0, 0);
index = 0;
}

}
}

Note that there is a “race condition” where if another character-receive interrupt
comes in before the LineOutputTask finishes receiving the buffer,1 characters
would be lost. The solution is left as an exercise for the reader. ;-)
58 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
The code fragment for the UART receive function:

#include <iccioavr.h>
....
#pragma interrupt_handler uart_receive:iv_USART0_RX
void uart_receive()

{
cinput = UDR;
eMOS_SchedOn();
}

Finally, to put the system into sleep mode in the idle task hook:

void IdleFunction()
{
eMOS_SchedOff();
asm(“SLEEP”);
}

...

...
main()

{
... // set up for low-power mode etc.
eMOS_SysInit(...);
eMOS_TaskCreate(...);
... // TaskCreate for all tasks
eMOS_SysIdleHook(IdleFunction);
eMOS_SysStart();// never return
}

With eMOS, we provide a framework that allow you to write your programs without too
much concern about the tasking model. Our goal is for eMOS to work for you, and not
the other way around.

1. To be precise: when eMOS_MsgReceive finishes copying the data from the buffer
in LineInputTask to the buffer in LineOutputTask.
59 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
eMOS RESOURCE USAGE
These figures should only be used as a guideline, as the actual implementation may
change. The timing cycles are usually the best-case scenarios with not many tasks or
memory fragmentation. We at ImageCraft will do our best to keep the information
updated.

Table 1:

API Module Size in Bytes (flash)

Kernel API 4600

Message Passing API 800

Mutex 600

Memory Management 1100

Virtual Watchdog 1020

Com Module 2460

Table 2:

Data Structure Size in Bytes (SRAM)

Process Data Structure 36

Mutex 9

Minimum Stack Space 58

Kernel Stack Size 50

Table 3:

Functions Approximate # of Cycles

Timer interrupt 100

Timer Interrupt, no scheduling 160
60 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
Timer interrupt to running a new
task (scheduling)

450

Message send (until blocked) 340

Message receive with message
pending

300

Mutex lock 120

Allocating a block (first find) 470

Allocating a block (find in 5th link) 600

Table 3:

Functions Approximate # of Cycles
61 (Document Version 1.01 1/22/09)

eMOS - Embedded Message Passing RTOS
62 (Document Version 1.01 1/22/09)

	eMOS User Manual
	INTRODUCTION
	Change Logs
	Software License Agreement
	GETTING STARTED
	STACK CHECKING
	ERROR MODULE
	API SUMMARY
	CORE SYSTEM
	MULTITASKING KERNEL
	MESSAGE PASSING
	MUTEX
	COM PORT MODULE
	MEMORY MANAGEMENT
	THE VIRTUAL WATCHDOG
	USER-SUPPLIED CODE
	OPTIMIZING YOUR SYSTEM
	EXAMPLE
	eMOS RESOURCE USAGE

