
Smart.IO API
V0.1 July 25th, 2017

richard@imagecraft.com
Richard Man, ImageCraft, https://imagecraft.com/smartio

Once you have integrated the Smart.IO module into your hardware (see the Hardware
Integration Guide) - which in the case of the Arduino Shield means that you just attach the
shield to your Arduino or Arduino work-alike, then it’s time to start writing the software! (First you
may need to port the Host Software Layer, see the Software Integration Guide for details.)

With Smart.IO, your embedded program is linked with the Smart.IO host interface layer, a set
of C functions which allow you to access SMart.IO features.

The Smart.IO API is divided into these categories:

1. System / BLE initialization
2. Creating and managing UI elements
3. Updating the values of UI elements
4. Callback function mechanisms to accept end user input
5. System commands such as storing and retrieving UI values in Smart.IO EEPROM
6. Miscellaneous commands

The UI elements consist of:

1. Input elements such as on.off switches, sliders, text entry boxes, etc.
2. Output elements such as gauges, progress bars, text display, and even RGB LEDs, etc.
3. Static and other elements such as labels, informative icons, page navigation, etc.

Terminology
In this document, the following terms are used:

● API refers to the Smart.IO API
● App refers to the smartphone Smart.IO app running on either iOS or Android
● Custom App refers to a version of the Smart.IO app customized to a specific

firmware/product
● End User refers to the person using the phone app
● User refers to the embedded programmer
● Firmware refers to embedded firmware written by the user.

mailto:richard@imagecraft.com
https://imagecraft.com/smartio

App Version
The Smart.IO app can work with any Smart.IO device by default. There are three basic versions
of the app:

1. Free generic version. This supports any Smart.IO-enabled product (unless explicitly
prevented by a specific product) with no optimization.

2. Paid (low cost) version. This includes caching support to eliminate some UI creation BLE
overhead.

3. Customized version. Embedded vendors may commission ImageCraft to customize a
version of the app that is specific to their product with their own logos, branding, etc.

Visit our page https://imagecraft.com/smartio/ for details.

Error Conditions
The app detects error conditions and returns error statuses to the calling firmware; for example,
if the firmware specifies an incorrect handle value for an operation. When designing the UI, it is
up to the firmware engineers to ensure that the error conditions are checked, either by checking
the return values from the app, or by running the generated UI and checking its operations.
During development, the firmware may enable debug output through the UART port. (See
details later.)

UI Cache
Since the Smart.IO app is generic in nature, the specific UI must be built by the firmware issuing
Smart.IO API function calls. Having a great-looking UI is important, but not if there is a lag for
the UI to show up! Also, using Bluetooth technology means that the device and the phone must
be paired, adding to the initial response time.

To address the issue with UI construction overhead, the paid and customized version of the
Smart.IO app caches the UI creation instructions, so that after the first run, BLE overhead is
significantly reduced in subsequent runs.

The customized app also allows transparent pairing of the app to a specific product, so that the
pairing overhead can be eliminated as well.

https://imagecraft.com/smartio/

Local Storage
Currently, Smart.IO does not (yet) allow storage and accessing data “on the cloud” , and as 1

multiple phone devices may be used to access the embedded product, the firmware should
store the UI element values (e.g. the state of an on/off switch) in local storage so it can update
the UI element properly at startup. In the case that host hardware does not have persistent data
storage, the Smart.IO contains a 2K-byte EEPROM that may be used by the firmware for this
purpose. (The API is described later.)

API Dataflow
When the embedded firmware calls a Smart.IO API function, the behavior is as if the firmware
has made a regular function call: the command is carried out, and some point later the function
returns a result.

Internally, the host interface layer transfers the command to the Smart.IO module via the SPI
interface. After some massaging, the command is transferred to the phone app via the BLE
interface. After running the command, the phone app returns the result of executing the
command to the Smart.IO module (again via the BLE interface). The Smart.IO firmware
transfers the result to the host interface layer, which returns the result to the firmware call.

Firmware calls an API function
Firmware → (Smart.IO API) → SPI → Smart.IO firmware → (BLE) → App

The App (eventually) returns a result
App → (BLE) → Smart.IO firmware → SPI → (host interface layer) → Firmware

API calls are blocking; i.e. from the firmware point of view, it is just making a function call that
returns a result. The SPI and BLE transfer overhead, and the time that the app needs to
execute the command, are transparent to the firmware.

Callback Functions
Callback functions are used to receive new values from input UI elements. When the firmware
creates an input element, it provides the address of a function that the host interface layer will
invoke when the end user interacts with that UI element. A callback function accepts either an
integer or a string as its parameter, depending on the UI element.

1 “Cloud access” involves strong security measures. Smart.IO will be further developed with robust
security in mind for Cloud access in future releases.

By necessity, a callback function is called from inside an interrupt handler (which is a part of the
host interface layer). Therefore, to minimize disruption to the firmware execution, either the
callback functions should return as soon as possible, or the firmware should be designed to use
an interrupt-driven execution model. This is a standard problem with dealing with interrupt
driven code in firmware. Typically, a callback function that needs to run many instructions sets a
global flag that is picked up by the normal execution flow later.

While the end user may modify an input element at any time, the Smart.IO firmware and the
host interface layer are written such that callback functions are not called during the execution
of an API call. The Smart.IO firmware stores up to a maximum of (16) callback invocations in its
internal memory. The callback functions are invoked in the order in which they arrive.

While there is no mechanism for a callback function to indicate to the Smart.IO firmware that it is
finished processing, callback functions are invoked on the host MCU side by interrupts. As most
MCUs do not allow nested interrupts or the same interrupt to interrupt itself, this is not a
problem.

Alternative Callback Model
The callback mechanism is handled entirely in the host interface layer. Since the source code to
the host interface layer is provided, you can replace it with a different operating model. For
example, the host firmware may use an event-driven style or an RTOS, and the callback
mechanism can be rewritten to work with such code. ImageCraft may provide alternative models
in source form if demand warrants.

GUI Slice
To simplify building a UI that works for all phone devices with varying resolution and across two
different types of OS (iOS and Android) with minimal effort from the firmware engineers, the
Smart.IO UI toolkit uses the concept of GUI Slices.

A GUI slice, or slice , contains a UI element, plus optionally an informative icon and a 2

descriptive text. For example, this is a screencap of three GUI slices:

In vertical order:

1. An on/off button slice with a “power” icon and a label of “Fan Power”.
2. An on/off button slice with a “horizontal on/off” icon and a label of “Manual Power”.
3. A slider slice, whereby the end user can “slide” the control in either direction.

Note that the two on/off buttons are grouped together. The code fragment that generates the
above looks like this:

// indentation here only to highlight primary GUI creation API

tHandle h1 = SmartIO_MakeOnOffButton(0, 0, 0, Button1);

 SmartIO_AddText(h1, "Fan Power");

 SmartIO_SetSliceIcon(h1, SMARTIO_ICON_POWER);

tHandle h2 = SmartIO_MakeOnOffButton(0, 0, 0, Button2);

 SmartIO_AddText(h2, "Manual Power");

 SmartIO_SetSliceIcon(h2, SMARTIO_ICON_H_ONOFF);

SmartIO_GroupObjects(0, h1, h2, 0);

tHandle h5 = SmartIO_MakeSlider(0, 0, 40, Slider1);

2 There is another type of slice, the freeform slice, which will be introduced later. As GUI slice is the
common case, so “slice” by itself always referred to a GUI slice.

The details of the functions will be explained later. It should be apparent that it is easy to build a
modern usable UI with Smart.IO with just a few lines of code.

GUI slices are laid out in the order they are called. For example, in the code fragment above,
the order of the SmartIO_Make??? calls correspond to the order of the UI elements on the
page.

For cases where the firmware needs to have more precise placement control of GUI elements, a
Freeform Slice may be used. (See description in later section.)

Virtual Screen Sizes and Screen Orientation
To simplify UI programming, the UI only operates in portrait orientation. This and the use of GUI
slices and other Smart.IO features (e.g. built-in font support) allow a GUI to be created that
looks optimal regardless of the OS and screen resolution of the target device. However, in some
cases, it is important to have fine grain control regarding the placement of certain UI elements.

To address these issues, Smart.IO divides the screen into 320 virtual pixels wide, and maps the
virtual pixels into the target device screen width. The app calculates the ratio between physical
pixels to 320 virtual pixels and uses the same ratio to calculate the virtual pixel dimension of the
height of the screen.

The height is almost never a factor in the UI as layouts are done using GUI slices, spacer slices,
and the auto-balance command (the latter two are described later). The only instance where a
problem may occur is when the firmware creates too many GUI elements for a single page. In
that case, the app generates a vertical scroll bar for the user to navigate the full page. However,
it is recommend that the firmware engineers to avoid this condition for a better looking UI.

Data Types, Strings and Transfer Memory
Smart.IO API defines the following data types:

● tHandle is a 16-bit unsigned integer. When the firmware creates a UI object, a handle to
the object is returned by the app so the object can be referenced later.

● tStatus is a 16-bit signed integer. Some API functions return status indicating success or
failure. In most cases, zero denotes success and non-zero denotes failure. Depending
on the API, the status may have different failure values. (See smartio_api.h for details.)

● label is a string, e.g. “char *”

The “native” argument type is a 16-bit unsigned integer (uint16_t) as that can hold most values
in the system. Using 16 bits versus 32 bits reduces unnecessary transfer overhead over the SPI

and BLE. This also makes it friendlier to 8-bit embedded systems, such as the ones using the
Atmel AVR MCU.

32-bit integers are used on occasion; for example, the “color” argument (e.g. font color) is a
32-bit value.

There are three processor spaces in the system (the user MCU, the Smart.IO module, and the
smartphone itself), and pointers are not passed between the processor spaces as it makes no
sense. Thus, a string object must be copied in its entirety between the processors even though
the standard C notation of “char *” is used to denote a string argument type.

The host interface layer allocates a block of host SRAM as transfer memory to store incoming
text data from the Smart.IO module to the host firmware. The size of the SRAM block is
#define’d as HOST_SRAM_POOL_SIZE in smartio_api.h (default is 512 bytes), which should
be sufficient for most uses in Smart.IO. You may modify this value (and rebuild the host
interface layer) to suit your system’s requirements. This value must also be sent to the Smart.IO
firmware as an argument to the initialization function. See the SmartIO_Initialize API
description. Finally, this block of memory is also used by the Smart.IO EEPROM read function
to hold the read-out values.

API Function Descriptions
The following are short summaries of the API functions. Since the API is evolving, no attempt is
made here to fully document all the functions in detail. For up-to-date details, please refer to the
smartio_api.h header file in the latest software host interface layer distribution.

Initialization Function
The firmware must call this function prior to any other Smart.IO API calls.

tStatus SmartIO_Initialize(

uint16_t host_sram_pool_size ,
uint32_t security_id,

void (*connect_callback)(void),

void (*disconnect_callback)(void),

uint16_t run_from_cache,

uint16_t isSansSerifFont,

uint16_t fontsize,

uint32_t font_color);

host_sram_pool_size: the size of the SRAM block allocated for storing string data
returning from the app. You should use the define constant HOST_SRAM_POOL_SIZE
(modified by the firmware port as needed).

security_id: a 32-bit key specific to this user product. This is only used for a
customized app. ImageCraft does not have a repository for user key values, and we
recommend you use a random number. While collision with another product is possible,
it will be highly unlikely if a good random number is used.

connect_callback: this is the firmware function to call when a connection is
established between Smart.IO and the phone app. The firmware should not make any
Smart.IO API calls unless the systems are connected.

disconnect_callback: the firmware function to call when a connection is dropped,
which could be due to the devices being too far apart, or abnormal operations. Invoking
this callback function should cause the firmware to reset the state of all UI related
functions.

run_from_cache: applicable to the paid version of the app only; otherwise, this
argument has no effect. UI creation operations are cached by the paid app during the
initial run. Subsequent runs require no further SPI transfers from the firmware, and thus

can decrease the execution time significantly. This argument disables the cache. This
should be set to 0 (do not disable) except for debugging or abnormal circumstances.

isSansSerifFont: if non-zero, this sets the default font style used to Sans Serif. The
firmware can override the font for any specific object. The default is to use Sans Serif
font.

fontsize: the acceptable values are 0, 1, and 2, representing small, medium, and large
font sizes respectively. The default is 1 or medium size.

font_color: specifies the default font color using 32-bit web color values. The default is
black, or 0x000000.

After the initialization call, the firmware must create a new page before creating any UI
elements.

Page Management
UI elements are organized into pages. All UI creation commands operate on “current page”, and
the firmware can switch pages programmatically.

The end user may navigate to different pages using the native OS page navigation mechanism
(e.g. on iOS, by swiping right or left), unless navigation is disabled by the firmware.

Command API Name

Create a new page and set it as the current page SmartIO_MakePage

Set the current page SmartIO_SetCurrentPage

Set the page title SmartIO_PageTitle

Display the specified page as the current page
and disallow/allow end user page navigation

SmartIO_LockCurrentPage

Input UI Elements
Input elements comprise the largest group of UI elements in the Smart.IO API. Most elements
have variations (different colors or shapes). (See Appendix for full details with graphics for all
the variations.) These elements accept input from the end user. The input values are passed to
the firmware via the callback mechanism. The general formats are:

// elements that have alignment, variation, and initial value

tHandle SmartIO_MakeXXX(

uint16_t alignment,

uint16_t variation,

uint16_t initial_value,

void (*callback)());

// elements that contain N entries (e.g. Picker, Expandable List)

tHandle SmartIO_MakeYYY(

uint16_t nentries,

void (*callback)());

The following input elements are provided:

UI Element Description API Name

On/off button An on/off switch SmartIO_MakeOnOffButton

3-pos button A switch with 3 positions SmartIO_Make3PosButton

Incrementer Increment / decrement control SmartIO_MakeIncrementer

Slider Slider SmartIO_MakeSlider

Expandable
list

A collapsible list to select one item.
No more than 6 to 8 items should be
on the list.

SmartIO_MakeExpandableList

Picker A scrollable list to select one item.
For use when large number of items
are needed.

SmartIO_MakePicker

Multi-selector A single or double rows of typically
2 to 6 items.

SmartIO_MakeMultiSelector

Number
selector

Select a number with a low and high
range

SmartIO_MakeNumberSelector

Time selector Select a time in hours and minutes SmartIO_MakeTimeSelector

Calendar
selector

Select a calendar date SmartIO_MakeCalendarSelector

Weekday
Selector

Select a weekday (MON-SUN) SmartIO_MakeWeekdaySelector

OK button A single button. The label can be
modified.

SmartIO_MakeOK

Cancel/OK
button

Two button choice. The labels can
be modified.

SmartIO_MakeCancelOK

OK “Link”
button

Same as an :OK button” except that
the it is linked to another UI
element. See text below this table.

SmartIO_MakeOKLinkTo

Checkboxes A group of checkboxes where
multiple items can be selected.

SmartIO_MakeCheckboxes

Radio buttons A group of radio buttons where one
item can be selected.

SmartIO_MakeRadioButtons

Text entry A box where text can be entered. SmartIO_MakeTextEntry

Password
entry

Same as “text entry” except that
each character is replaced by * in
the display.

SmartIO_MakePasswordEntry

Number entry Same as “text entry” except that
only numbers are accepted.

SmartIO_MakeNumberEntry

An OK/Cancel button is usually used to elicit a response from the end user. For example, to
prompt the end user to decide if they want to read the instructions:

{{ screen cap }}

[Show Instructions? [OK]]

If the end user taps on the OK button, the firmware is notified via the callback function. The
firmware then can display a POPUP display (see later description) showing the instructions.

However, in cases like this, the firmware’s participation is not really necessary, and the back
and forth communication adds overhead to the UI performance. The “OK Link button” UI
element addresses this issue. Using this feature, the firmware first creates a POPUP element
with the instruction text. Then the firmware creates the “OKLinkTo” element specifying the

handle of the POPUP element as one of its arguments. Once done, the app then handles the
end user interaction directly without involving the firmware.

Commands to Add Items
For input elements that have items: expandable list, picker, multi-selector, checkboxes, and
radio buttons, the following command is used to add a list item. They are inserted in the order in
which they are called.

NOTE: Multi-selector and checkboxes can have only up to 16 list items (note: fewer than 16 is
recommended for better visuals) since multiple items can be selected and a 16-bit bitmask is
used to indicate which items are selected.

Command API Name

Add a list item to an object, with an optional label SmartIO_AddListItem

The number of SmartIO_AddListItem must match the number of entries specified in the
original object creation call.

When a list item is selected or deselected, the index of the selected list item, or the bitmask of
the selected list item in the cases of multi-selector and checkboxes, is returned to the firmware
via callback functions.

Output UI Elements
These elements allow the firmware to display information or data to the end users. Customized
versions of the app may use customized images for gauges.

UI Element Description API Name

Text Box Display text in a box with specified
width (in virtual pixels). Also allow
slice icon, slice label, and box
alignment.

SmartIO_MakeTextBox

Multiline Text Display text in a box that takes the
full width of the screen

SmartIO_MakeMultilineBox

Counter Display numeric digits in a bound
box

SmartIO_MakeCounter

Progress Bar Display progress (percentage) in a
bar

SmartIO_MakeProgressBar

Progress
Circle

Display progress (percentage) in a
circular “bar”

SmartIO_MakeProgressCircle

Horizontal
Gauge

Display quantity (percentage) in a
horizontal gauge

SmartIO_MakeHGauge

Vertical
Gauge

Display quantity (percentage) in a
vertical gauge

SmartIO_MakeVGauge

Semicircular
Gauge

Display quantity (percentage) in a
semicircular gauge

SmartIO_MakeSemiCircularGauge

Circular
Gauge

Display quantity (percentage) in a
circular gauge

SmartIO_MakeCircularGuage

Battery Level Display a battery icon with the
charge level (20% increment)

SmartIO_MakeBatteryLevel

RGB Led Display a “led” with on/off state,
and one of the RGB (Red Green
Blue) colors.

SmartIO_MakeRGBLed

Custom
Horizontal
Gauge

Display quantity (percentage) in a
horizontal gauge with custom
colors

SmartIO_MakeCustomHGauge

Custom
Vertical
Gauge

Display quantity (percentage) in a
vertical gauge with custom colors

SmartIO_MakeCustomVGauge

More advanced output elements such as charts, graphs and tables will be supported in a later
release.

Auto Layout and Groups
To accomplish the goal of optimal-looking UI on all target devices, Smart.IO includes these
features in addition to GUI slices: spacer slices, the auto-balance command, and the grouping
command.

Command API Name

Add a spacer slice SmartIO_SpacerSlice

Auto-Balance the page layout SmartIO_AutoBalance

Group GUI slices together SmartIO_GroupObjects

A spacer slice is a placeholder on the page. The firmware may create spacer slices anywhere
on the page just as it would in creating a GU slice. When the function SmartIO_AutoBalance is
called, the app calculates the vertical empty space not used by the GUI slices (and freeform
slices, see later) and divides the amount of free space by the number of spacer slices on the
page. It then make each spacer slice take up that amount of vertical space. Thus, if there is one
or more spacer slices between two GUI slices, an empty space is created in proportion to the
number of spacer slices in-between.

For example:

Although not apparent, there is one spacer slice between the second on/off button and the slider
button, and two spacer slices between the slider and the 3-pos switch. When created initially,
they do not take up any space at all.

When the auto-balance command is executed, the result looks like this:

The empty space is evenly distributed to the spacer slices. In this way, auto-balance ensures
that the UI page occupies the full height of the device display and allows the firmware to 3

control the amount of empty space between the UI elements.

To further enhance the look and feel, GUI slices can be grouped together using the
SmartIO_GroupObjects call. Up to eight object handles can be specified at once, and any
objects adjacent to each other that are on the list will be grouped together with a round corner
group box:

3 It is of course acceptable to create empty space at the bottom of the page by adding
SmartIO_SpacerSlice(s) as the last UI elements(s) of the page, before invoking the
auto-balance command.

In the example above, the two on/off switches are grouped together. You can specify multiple
groups with a single call, and the app is smart enough that it will only group adjacent slices
together.

It is acceptable for a group to have just a single slice. Grouping is for visual purposes only, and
the objects within a group are not tied in other ways.

Enable-If Command
Another feature to make an easy-to-use UI is the Enable-If command. The command allows a
group of UI elements to be enabled or disabled depending on the value or state of a parent UI
element. A UI element that is disabled will be dimmed.

The “enable-state” of the dependent UI elements is handled by the app itself with no action from
the firmware needed, thus making a more responsive UI.

Up to eight dependent UI handles can be specified at once. Multiple calls can be made to the
same controlling parent if needed. It is an error to have a direct or indirect recursive enable-if
relation.

The valid parent UI elements are:

UI Element Dependents Are Enabled If...

On/Off Button Switch is On

Expandable List At least one item is selected

Picker At least one item is selected

Number Selector A number is selected

Weekday Selector A weekday is selected

Time Selector A time is selected

Multi-Selector At least one item is selected

Checkboxes At least one item is checked

Radio Buttons An item is selected

Text Entry Any text is entered

Number Entry Any number is entered

Password Entry Any text is entered

Update Functions
Update functions are used to set the values of either input or output elements. You can usually
specify an element’s initial value in the object creation call (various SmartIO_Make… functions).
These functions allow the firmware to modify them afterward.

Generally for input elements, the firmware should store the current states of the elements
whenever they are changed in persistent memory, and then restore them during the next run of
the app UI.

Command API Name

Add text to an object. This can be used for adding
a slice label, or text to a text box, etc.

SmartIO_Addtext

Clear text field SmartIO_ClearText

Update an object with one integer attribute SmartIO_UpdateIntValue

Update an object with two integer attributes SmartIO_UpdateIntValue2

Update an object with three integer attributes SmartIO_UpdateIntValue3

Update an object with a string attribute SmartIO_UpdateString

Synonyms exist to give specific names to update different objects.

Real Name Synonyms

SmartIO_UpdateIntValue SmartIO_UpdateOnOffButton
SmartIO_Update3PosButton
SmartIO_UpdateIncrementer
SmartIO_UpdateSlider
SmartIO_UpdateExpandableList
SmartIO_UpdatePicker
SmartIO_UpdateMultiSelector
SmartIO_UpdateNumberSelector
SmartIO_UpdateCheckboxes
SmartIO_UpdateRadioButtons
SmartIO_UpdateCounter
SmartIO_UpdateProgressBar
SmartIO_UpdateProgressCircle
SmartIO_UpdateHGauge
SmartIO_UpdateVGauge

SmartIO_UpdateSemiCircularGauge
SmartIO_UpdateCircularGauge
SmartIO_UpdateCustomHGauge
SmartIO_UpdateCustomVGauge
SmartIO_UpdateBatteryLevel

SmartIO_UpdateIntValue2 SmartIO_UpdateRGBLed

SmartIO_UpdateString SmartIO_UpdateTextBox
SmartIO_UpdateMultilineBox

Popups
A popup is for displaying a full page UI that takes the focus of the app. It is disabled by default,
and when enabled, it has a close [X] gadget on the upper right. When enabled, the end user can
dismiss the popup and returns to the regular app function by tapping on the close gadget.

Multiple popups elements can be linked. When linked, the bottom control displays a ← on the
left if there is a previous popup and a → on the right if there is a next popup. For example, a
long set of instructions can be broken up into multiple multiline text boxes with each one in a
popup. The end user can read the popups page by page, navigating back and forth if needed,
and close the popup display any time they choose.

The SmartIO_Popup... commands mirror the set of SmartIO_Make... commands for making
GUI slices, and have similar arguments except that the Popup commands do not have
alignment parameters. For example, SmartIO_PopupOnOffButton creates a popup with an
on/off button just like SmartIO_MakeOnOffButton creates a GUI slice with an on/off button.

Appending multiple popups to the same source popup (with different calls to
SmartIO_AppendPopup command) results in undefined behavior.

Command API Name

Create a popup SmartIO_PopupOnOffButton
SmartIO_Popup3PosButton
SmartIO_PopupIncrementer
SmartIO_PopupSlider
SmartIO_PopupPicker
SmartIO_PopupMultiSelector
SmartIO_PopupNumberSelector
SmartIO_PopupTimeSelector
SmartIO_PopupCalendarSelector
SmartIO_PopupWeekdaySelector
SmartIO_PopupCheckboxes

SmartIO_PopupRadioButtons
SmartIO_PopupTextEntry
SmartIO_PopupNumberEntry
SmartIO_PopupPasswordEntry
SmartIO_PopupCounter
SmartIO_PopupProgressBar
SmartIO_PopupProgressCircle
SmartIO_PopupHGauge
SmartIO_PopupVGauge
SmartIO_PopupSemiCircularGauge
SmartIO_PopupCircularGauge
SmartIO_PopupBatteryLevel
SmartIO_PopupRGBLed
SmartIO_PopupCustomHGauge
SmartIO_PopupCustomVGauge
SmartIO_PopupLabel
SmartIO_PopupTextBox
SmartIO_PopupMultilineBox

Append a popup to another SmartIO_AppendPopup

Freeform Slices
A freeform slice is a “holding area” where the firmware may place one or more UI elements with
fine grain placement control. When the firmware creates a freeform slice, it specifies the height
of the slice in a number of virtual pixels. The width in virtual pixels is fixed at 320. The firmware
must be careful not to make a freeform slice too high. Again, if all the UI slices do not fit into a
particular device height-wise, then the app will create a scrollbar.

Once a freeform slice is created, the firmware creates UI elements within the freeform slice by
specifying each object’s X and Y location, relative to the upper left corner of the freeform slice . 4

The SmartIO_FFS_... commands mirror the set of SmartIO_Make... commands for making
GUI slices, and have similar arguments except that the freeform commands do not have
alignment parameters and take location coordinates. For example, SmartIO_FFS_OnOffButton
creates an on/off button in a freeform slice just like SmartIO_MakeOnOffButton creates a GUI
slice with an on/off button.

Command API Name

Create a freeform slice SmartIO_MakeFreeformSlice

Create a popup SmartIO_FFS_OnOffButton
SmartIO_FFS_3PosButton
SmartIO_FFS_Incrementer
SmartIO_FFS_Slider
SmartIO_FFS_Picker
SmartIO_FFS_MultiSelector
SmartIO_FFS_NumberSelector
SmartIO_FFS_TimeSelector
SmartIO_FFS_CalendarSelector
SmartIO_FFS_WeekdaySelector
SmartIO_FFS_Checkboxes
SmartIO_FFS_RadioButtons
SmartIO_FFS_TextEntry
SmartIO_FFS_NumberEntry
SmartIO_FFS_PasswordEntry
SmartIO_FFS_Counter
SmartIO_FFS_ProgressBar
SmartIO_FFS_ProgressCircle
SmartIO_FFS_HGauge
SmartIO_FFS_VGauge

4 E.g. the upper left corner of a freeform slice has the coordinate 0,0. Across right (width) is the X
coordinate and down (height) is the Y coordinate.

SmartIO_FFS_SemiCircularGauge
SmartIO_FFS_CircularGauge
SmartIO_FFS_BatteryLevel
SmartIO_FFS_RGBLed
SmartIO_FFS_CustomHGauge
SmartIO_FFS_CustomVGauge
SmartIO_FFS_Label
SmartIO_FFS_TextBox
SmartIO_FFS_MultilineBox

As the exact size of a UI element is defined by the app and is not known, the embedded
engineers should ensure that the X,Y coordinate chosen for a UI element does not conflict with
another UI element. This must be done by running the generated UI and tweaking the API calls
as needed.

Popup Alerts
Alerts are for displaying critical information to the end users. They are predefined by the
Smart.IO app but do have a few variations for the firmware to choose from.

Command API Name

Display an alert SmartIO_PopupAlert

They are not persistent UI elements, and are generated on-the-fly by the firmware. Once
displayed, they disallow further end user interaction except for dismissing the alert.

UI Element States
A UI element has two attributes: enable / disable, and visible (show) vs. invisible (hide).

● Enable implies show
● Show does not imply enable

● Disable does not imply hide
● Hide implies disable

Command API Name

Enable an object SmartIO_EnableObject

Disable an object SmartIO_DisableObject

Show an object SmartIO_ShowObject

Hide an object SmartIO_HideObject

Note: disabling or hiding an object does not remove the space it occupies on the screen.

Miscellaneous UI Functions
Deleting a GUI slice, freeform slice, popup, or a page will delete all UI elements contained
within. Deleting the UI element that are part of a GUI slice (which only contains a single UI
element) also deletes the GUI slice.

Some UI elements have fill colors, and the firmware can change it using the 32-bit web color
value.

Command API Name

Delete an object SmartIO_Delete

Set the fill color SmartIO_FillColor

Fonts
These are the font characteristics. By default, sans serif medium size font is used.

iOS (iPhone)

Font name Type Sizes

HelveticaNeue Sans Serif Small: 12
Medium (normal): 16
Large:20

Helvetica Serif Small: 12
Medium (normal): 16
Large:20

iOS (iPad)

Font name Type Sizes

HelveticaNeue Sans Serif Small:15
Medium (normal): 19
Large: 23

Helvetica Serif Small:15
Medium (normal): 19
Large: 23

Android

 Sans Serif Small:
Medium (normal):
Large:

 Serif Small:
Medium (normal):
Large:

The customized app may use special fonts.

Text Control Codes
Individual text strings may contain control codes that change the text attributes. Control codes
are prefixed with the % character:

Control Characters Effect

%% Output a single %

%B Bold the following characters

%b Un-bold

%l (capital letter i) Italicize the following characters

%i Un-italicize

%S Use serif font for the following characters

%s Use sans serif font

%0 Use small font size

%1 Use medium/normal font size

%2 Use large font size

%L Use superscript

%L Use subscript

%n Use normal script

%d Reset all attributes to default, equivalent to %b%i%s%1%n

These control codes work with respect to the app default of sans serif medium size font. That is,
the font attributes specified in the SmartIO_Initialize call have no effect.

For example, “Hello %BWorld%b!%IIam Alive%i!!” displays as

Hello World!I Am Alive!!

Color Values
Color values are 24-bit web color codes, encoding three 8-bit RGB (Red, Green, Blue) values.
Since there is no 24-bit data type, a full 32-bit value is used.

This web page (and a web search will show others if this site is unavailable) is a good resource
for web color codes: http://htmlcolorcodes.com/

http://htmlcolorcodes.com/

EEPROM Commands
If the host MCU does not have persistent storage such as its own EEPROM, the Smart.IO
module’s 2K bytes EEPROM can be used by the firmware. This is useful for storing and
retrieving the values of the UI elements so that the firmware can have an accurate display
during different runs of the app, even if the app is run on different machines (obviously not
concurrently).

Command API Name

Read bytes from EEPROM SmartIO_ReadEEPROM

Write bytes to EEPROM SmartIO_WriteEEPROM

These functions take the byte address location in the EEPROM and a buffer as arguments to
the functions. Reading from EEPROM always deposits the result in the Transfer Memory
described in the early part of this document. The firmware must not try to read a block more
than HOST_SRAM_POOL_SIZE bytes in a single call, or an error will result.

System Commands
The firmware invokes SmartIO_StopResume to “pause” the app, which is useful if the firmware
or the embedded hardware needs to perform a long running task and it cannot allow UI
interaction. The app displays a spinning circle indicating that it is busy, and no end user
interaction is allowed. The app resumes when the firmware calls this function again, or when it
makes any UI Smart.IO API call.

Under catastrophic circumstances, the firmware can reset the app to its original state using
SmartIO_Reset. The BLE connection is kept alive, but the GUI will be reset.

Command API Name

“Pause” the app SmartIO_StopResume

Reset the app SmartIO_Reset

Miscellaneous System Commands
The Smart.IO module has 3 (RGB) physical LEDs on board and can be controlled by the
firmware individually. It also has a hardware random number generator, and each Smart.IO
module is guarantee to have a unique ID that is different from any other Smart.IO module. The
set of functions below accesses these features.

Finally, for debugging Smart.IO operations, the firmware can enable debug output on the UART
port. The UART runs at 9600 BAUD and you can use a FTDI serial to USB cable to send the
output to a virtual COM port.

Command API Name

Set the hardware LED SmartIO_SetLED

Clear the hardware LED SmartIO_ClearLED

Toggle the hardware LED SmartIO_ToggleLED

Generate a random number SmartIO_GenerateRandomNumber

Obtain a unique integer ID SmartIO_GetUniqueID

Enable debug output in the UART SmartIO_UseDebugUART

Phone Commands
These functions allow the firmware to access information from the phone.

Command API Name

Obtain clock time SmartIO_GetPhoneTime

Obtain GPS coordinate (not yet implemented) SmartIO_GetPhoneGPS

Appendix A: UI Elements Graphics
Most UI elements have different “variations”, and future releases of Smart.IO software will
support color themes. Taken together, this allows embedded products to sport their own look
and feel.

This appendix shows the graphics for different variations of the UI elements. As this is just a
snapshot of a release, graphics from the most recent release of Smart.IO app may look
different.

Appendix B: smartio_api.h (function prototypes)

